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Coulomb correlation

We take Hartree-Fock as the zeroth order reference.
e This takes care of Fermi correlation.

The correlation energy is then defined as the remaining
deviation from the exact energy.

E = Eyr + Ecorr

When the HF reference is a good approximation to the
wave function, coupled-cluster methods accurately
describe the correction due to dynamic Coulomb
correlation.

We use the language of second quantization to discuss
coupled-cluster methods.
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Pair Clusters

The wave function for the motion of non-interacting
fermions is described by a slater determinant of occupied
spin-orbitals I = 1, N.

HF) =

H aI] [vac)

Allowing for instantaneous Coulomb repulsion, the motion
of two electrons in spin orbitals I and J is disturbed

B
a}aTJ — aIaJ + Z tA aAajB
A>B

The disturbance is represented by excitations into virtual
spin orbitals A and B with probabilities t5.
This is known as a pair cluster or two-electron cluster.
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Let us introduce an operator that describes this correlation

process

~AB
Trg = aj‘qa[a-i.Ba/J

We may write the pair cluster I.J as

[ H (1+ t?f?fJB)] a}a*ﬂvac) = a}a3|va0>+ Z t4Bal ol lvac).
A>B A>B

Allowing each pair of electrons to interact, we arrive at a
coupled cluster wave function

A>B,I>J

CCD)—{ 11 (1+t?f%f,3)] IHF).

Note that all 7/ commute with each other.
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General coupled clusters

Pair clusters account for the (dominant) two-electron
interactions.

The simultaneous interaction of three or more electrons
also occurs, and in addition each orbital relaxes.
We introduce a generalized excitation operator

A~ _ AABC... _ t % +
Ty = TIJK.. = 0401050 000K . ..

The generalized coupled cluster wave function is

ICC) = [Hu +tm)] IHF).

7

Note the product form, in contrast to the Cl wave function.

Cl) = <1+ C,@) HF).
zu: AT




The exponential ansatz

Since the spin-orbital excitation operators satisfy

Al% — O,
then
(L4 tu7) = exp(tufy).
and
ICC) = [H(Ht,ﬁu)] IHF) = exp(T)|HF),
w
with

T=> tuf
o

The order of the operators does not matter, [7,,,7,] =0

This exponential formulation affords significant
simplifications later on. AT

The hierarchy of excitation levels

We may classify the excitation operators according to the
level of excitation

T=Ty+To+ - +Tn

where T} contains excitations involving one electron only
= Zt?aLaI = Zt}q?f
Al Al

and 75 contains excitations involving two electrons only etc.

T = E tJ aAaIaBaJ
ASB
57
_ AB~AB
= E i aAaIaBaJ =1 E tTr Ty
AIBJ AIBJ
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« The truncation of the excitation operator 7' defines the
coupled cluster method

T=T1+To+ - +Tn

CCS i)
CCSD Ty + T
CCSDT Tl + TQ + T3

CCSDTQ Tl + T2 + T3 + T4

 Excitations Ty are able to account for the simultaneous
interaction of IV electrons.

e This series rapidly converges if the HF wave function is a
good zeroth order reference.
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Coupled cluster convergence towards full Cl

e The difference between the cc-pVDZ energies of H,O from
the full Cl limit of various coupled-cluster methods (E},).
The HOH angle is 110.565° and R,es = 1.84345 ag.

method R=Ret R=2R,s
RHF 0.217822 0.363954
CCSD 0.003744 0.022032

CCSDT 0.000493 -0.001405
CCSDTQ 0.000019 -0.000446
CCSDTQ5 0.000003

e The series converges very fast at equilibrium and slower at
stretched geometry where there a higher multi-reference
character.
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Connected and disconnected clusters
e Expanding |CC), we obtain

exp(T)HF) = <1+Ztm+2tutﬁm+---) [HF)
)2

p>v

= [HF) > tulu) + > tuty + - ).
o

p>v

« Note that each excitation 7, occurs only once in 7.
e Collecting determinants we see that a given determinant is
generated in several ways

Co = 1
(1)|HF) ZC\HF 2= 0
=P Co = Do+ %Tf
CA’3 = Ts + flfz + %TE
AIT
e E.g., the determinant with orbitals 1.J replaced by AB
(t77 )= AP) = tr7 710 [HF) + 74527 27 HF) — t7t577 27 |HF)

o ¢ and t?t’}‘ are
disconnected cluster
amplitudes

o t4B are connected
cluster amplitudes

e The maximum excitation in 7' determines the maximum
connected amplitude.

» All possible excitations are included in |CC), the
amplitudes of all higher excitations are determined by
products of connected amplitudes.

e Whereas each determinant is parameterized in Cl theory,
in CC theory the excitation process is parameterized. We
shall see that this leads to size consistency.
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The coupled cluster Schrodinger equation

We wish to solve H|CC) = E|CC).
What happens if we apply the variational principle?
. (CC|H|CC)

Enin = min

% (CC|CC)

|CC) depends on ¢, in a non-linear way:

5,-100) = [Hu +m>] )

v

The variational condition results in an intractable set of
nonlinear equations for the amplitudes.

{ul [H(l +tﬁ3)] H|CC) = Enin(u [H(l + tﬁl)] ICC)

v v
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The projected coupled cluster equations

In a given orbital basis, the full coupled cluster wave
function that includes all () — 1 excitations satisfies

1 exp(T)|HF) = E exp(T")|HF)

We may set up () equations to find the energy and
amplitudes by left projecting by each determinant.

(HF|H exp(T)|HF) = E
(ulH exp(T)|HF) = E{(u|exp(T)|HF)

The are the projected coupled cluster equations and must
be solved self consistently.
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For truncated cluster operator Ty the Schrédinger
equation is never satisfied.

H exp(Ty )|HF) = exp(T")|HF) # Ey exp(Ty)|HF)

For a cluster operator that includes n-tuple excitations we
project the Schrddinger equation onto the manifold of all
n-tuple excited determinants.

(HF|H exp(T)|HF) = E
(n|H exp(T)|HF) = E(u,|exp(T)|HF)

Solving self consistently yields approximate amplitudes
and an approximate energy, which may be above or below
the exact energy.

The error in the amplitudes is due to the missing
interactions with the excitations absent from T'y.
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The similarity transformed Hamiltonian

Since (HF|exp(—1") = (HF|, we may left multiply by
exp(—1).

Hexp(T)HF) = Eexp(T)HF)
exp(—T)H exp(T)HF) = E|HF)

The projected energy and amplitude equations are then
decoupled.

<HF|exp(—T)ﬁexp(f)]HF> = FE
(ulexp(~T)H exp(T)HF) = 0

We define the similarity transformed Hamiltonian:
AT = exp(—T)H exp(T)

HT may been seen as an effective Hamiltonian and is
non-Hermitian. AT




The BCH expansion

e The similarity transformed Hamiltonian may be simplified
through the Baker-Campbell-Hausdorff (BCH) expansion.

« We Taylor expand A>T around A = 0

A = exp(—XT)H exp(\T)
R df_[AT d2I_':r)\T
- HgM 142 e
a0 | A D boo TV T oo T
dHAT A R
o = exp(—AT)[H,T]| exp(AT)
AT A R
o Setting A = 1 we obtain the BCH expansion

AIT

« In fact, the BCH expansion of A7 terminates after only four
nested commutators.

at = g+ a1+ LH.1,7)+ L&, 1), 1], 1]
+a (1A, 10,17, 1, 71

 We recall that a commutator [4, B] has a rank one less

than the operator AB, reducing the rank of the A and B
contributions by one half. e.g.

[anaQ, CLLG[] = 5QAa}L3aI — 5p1af4aQ
e Since the Hamiltonian is a rank 2 operator, four successive
commutations removes the contribution from H leaving
only the excitation operator contributions, which always
commute, [a'yar, ala;] = 0.
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The coupled cluster energy

Applying BCH to the projected energy expression,
E = (HF|H|HF) + (HF|[A, T]|HF) + 5 (HF|[[A, 7], T]|HF)
+ g (HF|[[[H, 71,71, TNHF) + 2 (HF|[[[[&, 71, 71, 7], T]/HF)

« This simplifies considerably, since (HF|T' = 0

e and since H is a two particle operator, it can de-excite a
maximum of 2 electrons: (HF|AT;|HF) = 0 for i > 2

e also (HF|AT;|HF) = 0 due to the Brillouin theorem.

The projected energy expression is simply
E = Epp+ (HF|[,T3]|HF) + %(HFH[ﬁ7T1],T1]|HF>

Only singles and doubles amplitudes contribute directly to
the energy, but the singles and doubles amplitudes depend
on all the other amplitudes.
AT

The coupled cluster amplitude equations

Applying the BCH expansion to the projected amplitude
equations

0 = (ulexp(=T)H exp(T)HF) -
= (ulHHF) + (ul[H, T]HF) + 5 (ul[[H, T], T]|HF)
+ gy (ullllA, T, 1), TYHF) + 3 (ul[[[[A, 71, 71,71, T1|HF)

These form coupled a set of nonlinear equations, at most
quartic in the amplitudes.

In fact, except for singles and doubles, the amplitudes for
the highest excitation level only occur linearly.
Further simplifications arise for specific coupled cluster

models. We shall now examine the closed shell CCSD
model in more detail.
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Evaluating the CCSD energy

e For CCSD 7T =Ty + T5

e For closed shell systems we use the spin free excitation
operators

T, = Zt“Em Zt?(azaam—i—alﬁaw)

at

T, = 2ZW)EmEbj

aibj

T 1 T
B b amamab Qjo —|—amawabﬁaw

aibj _Faaﬁa%ﬁab aja +_aaﬁa7ﬁabﬁajﬂ

 These excitation operators commute with S+ and S, and
do not alter the spin state of the closed shell HF reference.

AIT

The closed shell CCSD energy is then

E = Epgr+; Ztab HF|[A, E,; Ey;]|HF)

aibj

+1 Zt“tb HF|[[H, ELs], Eb;]|HF)

aibj

Since (HF|E,; = 0 we may write this in the form

E = Egp+3) (5} +t4) (HF|[[H, Eu, Ey;]HF)

aibj

In general it is useful to derive general expressions for
commutators of this type since they occur frequently.

However, here we will only consider the term required for
the expectation value, (HF|H E,; Ey;|HF).
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e We use Wick’s theorem to normal order the operator string
HE,;Ey; with respect to the HF state. Only the fully
contracted terms contribute to the expectation value.

o We recall that the normal ordered spin free Hamiltonian in
canonical orbitals is

H=FEyp+ Z ep-Epp: + 3 Z GpqrsEpgBrs — 0qrEps:
P pgrs

e Excitation operators are always normal ordered since they

contain only g-creation operators aL and a;. We therefore
use the generalized Wicks theorem

ABC...:: XY Z...:. = ABC.. XY Z...:

+ Y :ABC.XYZ..:

singles

+ Z:ABC...XYZ...: +
doubles A\‘(IT

e The only fully contracted terms arise from the quadruple
contractions of the term

) gpqrs-quErs- -EaiEbj- =
pqrs

122 . ] PN P RS
5 Gpqrs Gy Qquly, Qsy’ Qg GioQy Az

UVOT pQrs

(HF| :aguaq”aiyasy: :alaawazTajT: |HF) =

T |

] | T
(HF| a; agual, as,al, a0 _a;. + gy sy Ao Qig Gy Gy

LT, c

T T q. . . :
+ apua(ﬂiarvaSVaaoa’bUabrajT + ap,uaquarVGSVaaoaanbTaJT ‘HF>

- <HF|5pi5qa5Tj(ssb5uJ5uT - 6pi5qb5rj53a6u05u’r61/76ya
_5pj5qa5ri58b5MT5u05V051/7' + 5pj5qb5ri55a5,m-5ua|HF> A\‘(IT




e Performing the summation we arrive at

% Z Z gpqrs<HF|5pi5qa5rj53b5u05VT - 5pi5qb5rj55a5u05p7'5u7'5ua

UVOT pqrs
_5pj 5qa5ri55b5u75u05w751/7' + 5pj5q657’i58a5/17'51/0|HF>
= 1(49iajb — 29ibja — 29jaib + 49jbia)
= (49iajv — 29ivja) = 2Liajp

o This is the only contribution to the term (HF|H E,; Ey,;|HF)
and the closed shell CCSD energy is given by

E=Eur+» (8 +t1)) Liajs
atbj

e Since the energy only ever depends on the singles and
doubles amplitudes, this equation is valid for all closed
shell coupled cluster methods.
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The CCSD singles amplitude equations

e The singles amplitude expressions for CCSD are
(p1] exp(~T)H exp(T)HF) = 0
o Applying the BCH expansion we arrive at

(u1|HHF) +
+{u|[H, To]|HF)  +
+(u|[[H, Ta], o) HF)  +

<M1|[ﬁ,AT1]A|HFZ
Ll[[A, T1], ] |HF)
%<M1|[[[ﬁ7Tl]aTI],Tl]‘HF> =0

o This is cubic in the 73 amplitudes, but only linear in the 7%
amplitudes.

e The evaluation of these commutators follows the same
principals as for the energy.
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The CCSD doubles amplitude equations

e The doubles amplitude equations for CCSD are
(nal exp(~T)H exp(T)HF) = 0
e Applying the BCH expansion we arrive at

o (2| HHF) + (uo|[H, T1]|HF)

+(po|[H, T2]HF) + 3{u2|[[H, T1], T1] HF)
+(p2|[[H, 1], T]HF) + 3 (ua|[[H, T3], T3] |HF)
+3 (ual[[[H, T1], Th], 1] HF)

+3 (ua|[[[H, T1], T1], T2] HF)

)

+o (o|[[[[H, T1), Ta], T1), T1]HF) = 0

e The singles amplitudes appear to fourth order but the
doubles only appear quadratically.
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The T'1-transformed Hamiltonian

e The expressions for the amplitudes are much simplified if
we introduce a T'1-transformed Hamiltonian. Writing the
similarity transformed Hamiltonian

exp(—Ty — Ty) H exp(Ty + T>) = exp(—T2) H exp(13)
e The singles and double amplitude expressions are then

(a[HIHF) + (u|[H, T>]|HF) = 0
(p2| HIHF) + {ua| [, To)HF) + 3 {pl[[, To], 2] HF) = 0

e and are equivalent to the CCD model.
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e The T'1 transformation has the effect of rotating the
orbitals.

e This means that the T'1-transformed Hamiltonian is
expressed in terms of a new set of creation and
annihilation operators, which relate to the new orbitals.

H= Z ;Lan}rng + % Z gpQRSgLJIfDELE(NlScNLQ + Anuc
PQ PQRS

e The new ap, EL} are simply linear combinations of the
original ones.

~ A ~
a} = a}—Ztlag aj:l:az
A
as = aA—l—thaA ar = ay
I

e Note that the T'1-transformed integrals are not symmetric
to permutation of the orbital indices, but the permutational
symmetry upon electron permutation is retained. AT

Optimizing the coupled cluster wave function

e We intend to find the amplitudes such that
(1| exp(=T) H exp(T)|HF) = 0

e For an arbitrary set of amplitudes t, we have the vector
function Q(t):

Q,.(t) = (ul exp(~T)H exp(T")|HF)
o We may expand (t) around the current best guess t = t".

aQ°(t™)

Q(t) = Q°(t") + 5

At +

e Improving the amplitudes t"*! = t™ + At™ (Newton):

Q' (t")At" = —Q°(t")
AT




The Jacobian matrix Q;,(t)

The Jacobian matrix details how the vector of residuals of
the amplitude equations Q°(t), responds to a change in
the amplitudes.

Q%(t) = (ulexp(—=T)H exp(T)|HF)

QZ(t) - ILLl [H(l tu Ty ] [H(l +tVTV)] ’HF>
090 )

alzft) = (ulexp(~T) %, exp(T)|HF)

— (| exp(—T)#, H exp(T")|HF)
Note that 72 = 0.

o0 (t» NP .
o, — wlexe(=T)[H, 7] exp(T) HF)

Q,,(t") =
AIT

The quasi-Newton method

Newton’s method involves solving a set of linear equations
in each iteration.

Q' (t")At" = —Q°(t")
The quasi-Newton method avoids this expense.
Q") = et + {ul exp(~T") exp(1™)|HF)
Q. (t") = eubu + (ulexp(=T")[®,7,] exp(T™)|HF)

The diagonal part is from the HF contribution.

The nondiagonal part from the fluctuation potential is small.
Improving the amplitudes t" ! = t™ + At"™ (quasi-Newton):

e = —Q0 (")
AT




The 7; diagnostic

It is important to judge the reliability of a CC calculation.
e Basis set convergence aside, the convergence with the
level of excitation is much slower if the HF determinant is
not a good zeroth order reference. In this case the CCSD
method would be inappropriate.

Simplest diagnostic is to examine the coefficients of the
CSFs in ¢. Multireference character is indicated by a small
HF coefficient or large coefficients for certain CSFs.
Another useful indicator is the 7; diagnostic.

Ti = [t1]/VN

e The norm of the vector of 7} amplitudes, scaled to be
independent of the number of correlated electrons N.

e Empirically, if 77 is less than 0.02 then a CCSD result is
considered reliable.

e Higher order excitation levels can correct for some amount
of multireference character. IT

Size consistency

Defined as the property that E(AB) = E(A) + E(B),
if the subsystems A and B do not interact.

Coupled cluster methods are size consistent (in contrast to
truncated CI).

Assume that |CC4) and |CCp) are known.
The energies of subsystems A and B are

Ey = (HFA|HA|CCL) = (HF 4|HY|HF 4)
Egz = (HFp|Hg|CCp) = (HF5|AL|HFR)

The amplitudes defining |CC 4) and |CCp) fulfill the
projected equations

(ua|HEHF4) = 0
(up|HLHF) = 0

Recall that 7 = exp(—1")H exp(T). AT




e For the combined system AB, where A and B do not
interact, we have Hp = H4 + Hpand

HF45) = |HFAHFp)
|ICCap) = exp(Ta+T1B)HFAB)
e Note that
I:IZ;B = eXP(—TA — TB)(I:IA + ﬁB)eXP(TA + TB)
= exp(—Ta)Haexp(Ta) + exp(—15)Hp exp(1p)
- AY 4+ 0%

o |CC4p) fulfills the amplitude equations for the system AB.

|
o

(pap|H% 5 HF B
(uaHF | A% + AL |HF 4 HF
(HF gpp|HY + HE|HF 4HF 5

(papp|H} + HE|HF AHF 5

palHY|HF 4) =0
up|HEHFE) =0

~ ~ ~— ~~—
o~~~

I
o

AIT

e For size consistency we require that Exap = E4 + Ep.

Eap = (HFap|Hp|HFAR)
= (HF HF3|A% + AL|HF 4HF 5)
= (HF4|HY|HF 1) + (HF5|HE|HF )
= Es+Ep

e Using the same arguments one finds that all of the terms in
the coupled cluster equations are size consistent. e.g.

[[IA{AB; TlABLTlAB] = [[ﬁA; TlA]aTIA] + [[ﬁB, TlB]aTIB]

e This coupled cluster formalism is in fact term-wise size
extensive — size extensivity requires that the correlation
energy scales correctly with the size of the system.

e The expressions arising from the non-similarity
transformed Hamiltonian are not term-wise size-extensive.
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Coupled cluster and perturbation theory

e In perturbation theory we split the Hamiltonian into two
parts, a zeroth order reference and a small perturbation.

H = ﬁo + U
» The solution to H,|0(®)) = E(©)[0(®)) is known.

o In Moller Plesset perturbation theory the Fock operator f is
the zeroth order Hamiltonian and the perturbation is known

as the fluctuation potential ®.

H = [+ houe
H = thqa};aQ —~ Z gpQRgana}r%agaQ + RAnue
P PQRS
Po= Y cpabap
P
® = H—f—houe
f =t T

Mgller Plesset perturbation theory

o We expand terms of the Schrédinger equation
H|0) = FE|0), in orders of the perturbation

rea(5)-(£) ()

E = EO L p@) L g@ . ..
0) = [0©) + oMy + 0@ +

e Collecting terms in each order we obtain

E@0@y = 700
EM|0O) (f — EUMN”%+MNM>
ED0®) = (f - EO)]0®) + (&~ BM)0®)
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We expand |0(™) in terms of the eigenstates of the Fock
operator, the excited state determinants

00y = >~ M)
m
Note the intermediate normalization (0("]0(®)) = 0.

Projecting the first order equations by (HF| = (09| and (y|
we obtain the energy and amplitude expressions

EW = (HF|®HF)
e, O = —(u|®HF)

The equations for the second order energy and amplitude
are more complicated.

E® = (HF|$j0M)
enCP = —(ul® - EW)W)
AT

Coupled cluster perturbation theory

In coupled cluster theory the Schrbédinger equation is
Hexp(T)|HF) = Eexp(T)|HF)
exp(—T)ﬁ exp(f’)|HF> = FEJ|HF)
(fT + ®T)HF) = E|HF)

We expand terms of the Schrédinger equation in orders of
the perturbation.

o0

o= > 17" ®T = Z:l[cﬁT](n)

n=1
E = Z()E(n) o= f+zlzsut§f)@
n= n= 2

Note that e.g. Ty = Tz(l) + Tz(z) + - AT




The Schrddinger equation becomes

<f+z )HF) = (iﬂn)) IHF)

Collecting terms of order (n) in the perturbation we have

> et 4 [T

EQOHF) = fHF)
EMHF) = Zsut(")“ HF) + [®T]™|HF) n >0

Projecting onto (HF| and (u:| we obtain the coupled cluster
perturbation expressions for the energy and amplitudes.

EM = (HF|[®T]"™|HF)
enty) = —{ul[®7]"|HF)

Note the similarity to the usual coupled cluster equations.
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Perturbation order and excitation levels

The excitations present at each order of perturbation is
determined by the amplitude expressions

ent( = —(ul[®T]|HF)
Applying the BCH expansion to 7 = exp(—7")® exp(7)

®T = O+ [, T+ L[[®,T1,7] + &[[[®, 17,77, 1]
+3 (M1, 71, 77,71, 17

and expanding 7' = 7W + 7@ + 76G) ... we obtain

et = —(u|®HF)
et® = —(u|[®, TW]|HF)
et = —(u|[®, TN HF) — (ul[[®,TM], TW]HF)
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e To nth order in the perturbation the wave function is
100) = [exp(T)]"|HF)

e To first order only doubles excitations enter the wave
function since @ is a rank 2 operator and (1 |®|HF) =0

Sutly = —(n2|®/HF)

00) = [exp(T)]V|HF) = ;" |HF)
» To second order singles doubles and triples excitations
enter the wave function since [, Tz(l)] is a rank 3 operator
cutll) = (&, TV IHF)
0®) = [exp(T)]@HF) = (f@) + %TGWU) HF)
= TOHF) + T HF) + T2 HF) + 1707 | HF)
AT

e The third order wave function contains connected
quadruple excitations, and corrections to the singles,
doubles and triples amplitudes.

eutd) = —(ul[®, TONHF) — (u|[[®, TM], TW]HF)
00y = (T(3)+T(2>T(1>+1T(1>T(1>T<1>> HF)
= TP HF) + T |HF) + (7 (3)+T(2)T(1)>|HF>
+ (19 + TP |HF) + TP 7 |HF)
+TOFDFD I HF)

e In general, the nth order excitations enter to order n — 1.

e The only exception is the singles, which enter at second
order due to the Brillouin theorem.

e These results are the same as for MPPT, but they have
been derived much more easily.
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The CCPT Energies

o Currently E(™ requires knowledge of (")

EM = (HF|[®T]"™)|HF)

o Wigner’s 2n + 1 rule states that E(2**1) only requires the
wave function to nth order.

e We note that the coupled cluster equations represent a
minimization of the energy subject to the constraint that the
amplitudes fulfill the projected amplitude equation.

) = E

(HF| exp(~T)H exp(T)|
(T)HF) = 0

(| exp(=T) H exp(T))|
e To derive efficient CCPT energy expressions, we transform

the constrained minimization to a free variational
minimization using the technique of Lagrange muiltipliers.

HF
HF

AT
Constrained optimization and the Lagrangian
e Let f(x,y) be a function that we would like to minimize
subject to the constraint that g(x,y) = 0.
e The gradient of f(z,y) may be
expressed in two components
f/(xa y) = <C:g|l| (x7 y) + 693_(.%, y)
e At the minimum (zo, yo), € = 0.
o We define the Lagrangian L(z,y) = f(x,y) — eg(z, y),
which we minimize with respect to z, y, ¢ without constraint
8_L _ —0 e Ensures that the constraint is satisfied
9(z,y) e TR
gi 5 5 at the minimum: L(zo, v0) = f(x0,%0).
a. = or _ 29— e Determines the Lagrange multiplier ¢,
ox ox ox o )
ol af 9y which is the component of f/(x,y) in the
o - oy é‘a—y =0 path of the constraint. QAT




The coupled cluster Lagrangian

e The coupled cluster Lagrangian depends on amplitudes t
and Lagrange multipliers t.

L(t,]) = (HF|fT + &TIHF) + 3 £ (ulf” + &7 |HF)

o

= Eo+ (HF|®”|HF) + Zgutufu + Zf“<“|$T|HF>
n H

- oL 2
L, = == =0=cut,+ (u/®T|HF)
ot
oL — AT T NT A~
L, = 8720:€utu+<HF|q) 1) + E :tu<ﬂ|[¢ , TullHF)
p I

o Note that &7 is not Hermitian: (HF|®T |u) # (u|®T |HF)
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The CCPT Lagrangian

e Solving the CCPT equations is equivalent to expanding the
coupled cluster Lagrangian in orders of the perturbation

and minimizing each L(") separately.

L = Eo+ (HFSTIHF) + Y e t B, + > 7.(u|dT|HF)

H iz
L = LO4 M0 @ ...
n—1
L) = BO5, 0+ (HFIBTIIHF) + 303 T
n k=1
n—1
+ 373 TP ([T R HF)
no k=1

. (n) oL(Mm)
o With 2L — 2L _
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* t, and ¢, have been expanded in orders of the perturbation
strength o

ty, = at/(}) + aztff) + oz?’tff) +
oL™) 0 — 0L 2 oL™) N 3 OL™) N
0t oty ot ot

« Since this holds for any value of «, L{(™) must be stationary
with respect to all t("’) and Eﬂ“)

AL™M) AL
ot orth)

« We may eliminate terms in L(™ that are linear in t(k) or Eff’).
o L(27) and L(27+1) gre linear in vectors E( ) for all k.
o L(27) and L(27+1) gre linear in vectors t( ) for k > n.
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n—1
B = B0+ Y3 0 ¢ (HFIBIHF)S,

n k=1

n—1
+(HF|[®, T V)HF) + Y (HF|[[®, 7")], 7 ~* D] |HF)
k=1

+ Y T (uld|HF) sz(k) ([, T+ D] IHF)
I po k=1

n—3n—k—2
+03 3 A T2 )+
no k=1 1I=1

e For L2"+1) we may eliminate all £ or #) with & > n.

o For L") we may eliminate all £\ with & > n and all #;"
with & > n — 1 (2n + 2 rule for the multipliers).
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The CCPT energies

We have now arrived at expressions for E(2»*1) that
depend only on tﬂ“:) and Eﬂ“) with k£ < n. Starting with

n—1

EM =L = EO%¢, o+ (HF[[OT]MHF) + ) ) et
po k=1
n—1
+ 3 Y P ([T R HF)
po k=1

and eliminating terms that do not obey the (2n + 1) and
(2n + 2) rules, we obtain

EMN = (HF|®|HF)
E®) = (HF|[é,T{"]|HF)
We note that L) = L{M = 0 implies that (") = 7). AdT

The CCPT energies

The third order energy is given by
L® = > e DT 4+ e QD + (HF|[®, TO)|HF)
1z 7

+L(HF([®, TV TONHF) + 7 70 ([, T3V HF)
[

+ )12 (ul®|HF)

uw

Recall that only double excitations enter to first order.
After elimination of the terms linear in tﬁf) and fff)

E® = 3" 10 (0|[é, T5V]IHF)

n
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The CCPT energies

The fourth and fifth order energy corrections may be
obtained similarly

E® = S0 (|16, 7O HF) + 225%|[[&>,T§”1,T§”HHF>
I
E® = LHF|[$, 7], T HF) +Zf§}3 (o[, T@)], 5V HF)
1

+§jf@> (ul[®, TONHF) + 3> F2(u[[®, T4V, TEVNHF)

o
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Coupled cluster vs perturbation theory

In CC the amplitude equations are solved self consistently
for a given excitation level Ncc and associated projection
manifold.

Epnty, = —(n|®TNI|HF)  n < Nec

TNCC — T1+T2+"'+TNCC

In CCPT the amplitude equations are solved recursively up
to a given order Npt in the fluctuation potential. No

excitations are ignored, but only the amplitudes that
contribute to order Npt are non zero.

euty = —(ul[®T]HF) n < Npt

To what order in the fluctuation potential are the CC
amplitudes and energy correct?
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Perturbation orders in coupled cluster terms

e Recall that in CCPT the amplitudes for n-tuple excitations
tu, first occur at order n — 1 in the fluctuation potential.

* In the CC equations the n-tuple excitations ¢,,, first occur
when the cluster operator is truncated at n-tuple
excitations Ncc = n.

e The inclusion ¢, in the self consistent CC equations
affects the amplitudes ¢,,, , and ¢, , directly. E.g.

Epin A lpin 2 = _<Mn—2‘[d\)a Tn”HF> + e

e These correctionsto ¢, , andt,, , are of order n in ®.

e The lower excitations are affected indirectly through the
changesint, , andt, ., and the corrections are of order
n+1in ®.
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 We introduce the shorthand notation RY = —(j,|®7~|HF).
e Let us first examine CCS

gult,ul :R} = _<M1|&\>|HF>

e where é is the T1-transformed fluctuation potential.

C/]\) = exp(_Tl)d\D exp(Tl) = &D + [&\)7 Tl] + %[[&)7 Tl]a Tl] +-
e The order to which ¢,,, are correct is determined by the
order of the correction introduced by CCSD.

e For CCSD we have

St = B2 = R}~ (u|[®, 5] HF) — R +0(2)
st = B3 = —(ual®HF) — (][, ] HF)
Lo [[®, B3], B3] HF) — o)

e The CCS singles amplitudes are correct to first order in é'g\(lT




For CCSDT we have

ety = R} = RI— (u|[®,T5]HF) = R2+0(3)
Eplpy = R% = R% - </~;2\[&>,’f3]\HF> = R% +0(3)
Epstus = Rg = _<N3|[(I>7T2]|HF>

—<M3|[67~T3]|HF>

—5 (s [[®, 2], ]| HF)

—ps|[[6, o), T5]HF) = 0(2)

The CCSD singles and doubles are therefore correct to
second order in .

The CCSD wave function is correct to first order, due to the
lack of second order triples corrections.

The CCSD wave function is more accurate than that of
MP1, which is only correct to first order in the singles and

doubles.
AT

From CCSDTQ we see that the CCSDT wave function is
correct to second order due to the quadruples.

Eptpy = Ri = Rj

Emty, =Ry = R3+0(4)
Eutus = Ry = R} + 0(4)
Epalps = Rj — 0(3)

The CCSDT doubles and triples are therefore correct to
third order. The singles are indirectly affected by the fourth

order change in the doubles through (u1|[®, 75]|HF). The
correction to the singles is fifth order and the CCSDT
singles are are correct to fourth order.

The energy only depends on the singles and doubles. The
CCSDT energy is correct to fourth order due to third order
doubles correction in CCSDTAQ.
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Hybrid coupled cluster and perturbation models

e Let us examine the CCSD equations again

Emty, = _<M1|&)|HF> - <M1|[&>7T2”HF>
Euntyy = — (2| ®IHF) — (ua|[®, To][HF) — L(u2|[[®, T3], T][HF)

e The last two terms of the doubles amplitude equations
scale as n® with the basis set. The remaining terms scale
as n° or less.

e These terms represent second and higher order
corrections to the doubles amplitudes.

e Noting that the doubles are anyway only correct to second
order, we may approximate the doubles to first order by
discarding the last two terms, reducing the cost of the
calculation.
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The CC2 hybrid model

e The iterative solution of the resulting equations is the
hybrid CC2 model.

ety = —(ma|®HF) — (u1|[®, T2]|HF)
Epatus = _<M2’&)’HF>

e The quality of the CC2 wave function is intermediate
between the MP1 and CCSD wave functions.

e Since the doubles are correct to first order, the CC2 energy
is correct to second order and is expected to be of similar
quality to the MP2 energy.

E = (HF|®|HF) + (HF|[®, T5]|HF) + L (HF|[[®, T1], T1]|HF)

e Note that the CCSD energy is correct to third order.
AT




The CC3 hybrid model

For CCSDT the third and higher order corrections to the
triples amplitudes are the most expensive.

g,ust/w = _<M3|[$7T2]|HF> - <M3‘[$af3]‘HF>
— L (us|[[®, T3], T5]|HF) — ps|[[®, T2], T3]|HF)

In CCSDT the triples are correct to third order. Retaining
only the first term, we approximate ¢,,, to second order and
solve the resulting CC3 hybrid expressions iteratively.

5M1tul = R% - <:u1‘[é\>7 T3”HF>
Epptp, = R% - <M2‘[é\>>f3]‘HF>
8H3tua = _<:u3‘[d\)7 TQHHF>

The quality of the CC3 wave function is intermediate

between the MP2 and CCSDT wave functions.

In both CC3 and CCSDT the doubles are correct to third

order, the energy is correct to fourth order. KIT

CCSD(T): a noniterative hybrid method

The 2n + 1 rule states that we only require the second
order 1 to obtain an energy correct to fourth order in ®.

The CCSD wave function is correct to second order in 7}
and 75, but is missing the second order connected triples.

In CCPT the 71?) amplitudes are obtained from the 7"
amplitudes.

The CCSD(T) method consists of a perturbative
(noniterative) correction to the CCSD energy.
o Utilizing the expressions from perturbation theory,
approximate second order triples amplitudes *T3(2) are
generated from the CCSD T, amplitudes (rather than from
first order amplitudes).
e The second order corrected wave function is then used to
compute the fourth and fifth order energy corrections, which
are added to the CCSD energy. AT




e The forth and fifth order energy terms that contain the
connected triples amplitudes are

EY = ST (o[, T HF)
M2

ER = S (u|[d, TNHF) + T (0| [6, T3V HF)
M1 2

DA sll® TN + 372 (nel®, TPIIHF)

+ Zf@ (13| [, T@IHF) + sz (1al[®, 73], T3] IHF)

e The first two terms of E}S) arise from projection onto the
singles and doubles manifold. Of the five, only these two
are included in the CCSD(T) correction, which becomes

ABCPM = SVF (][, TONHF) + 3 1, (128, T2 HF)

M1 M2
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