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Abstract

Hybrid quantum mechanical/molecular mechanical (QM/MM) meth-

ods have become an indispensable tool for the study of biomolecules.

In this article, we briefly review the basic methodological details of

QM/MM approaches and discuss their applications to various energy

transduction problems in biomolecular machines, such as long-range

proton transports, fast electron transfers and mechanochemical cou-

pling. We highlight that for these applications it is particularly impor-

tant to balance computational efficiency and accuracy. Using several

recent examples, we illustrate the value and limitations of QM/MM

methodologies for both ground and excited states, as well as strategies

for calibrating them in specific applications. We conclude with brief

comments on several areas that can benefit further efforts to make

QM/MM analyses more quantitative and applicable to increasingly

complex biological problems.
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1. INTRODUCTION

One of the hallmarks of living systems is the efficient transduction of energy among different

forms via biomolecular machines(101, 120). Remarkable examples include the conversion of

light energy (or O2 activation) into proton motive force by bacteriorhodopsin (cytochrome

c oxidase), utilization of the proton gradient to synthesize ATP by the F0F1-ATPase and

to transport small molecules across the membrane by various transporters, and driving the

motion of biomolecular motors with the chemical energy of ATP hydrolysis. The definition

of efficiency for these biomolecular machines is somewhat subtle(12), but generally the values

are substantially higher compared to those of artificial machines. Therefore, uncovering the

physical and chemical principles that govern the working mechanism of naturally evolved

systems is not only of fundamental significance, but also valuable for providing guidance to

the development of novel molecular machines at the nanoscale(2, 131).

Since the ultimate driving force for most biomolecular machines involves chemical re-

actions, such as ATP hydrolysis, coupled proton-electron-transfers or electronic excitation,

theoretical and computational analysis of bioenergy transduction necessarily involves treat-

ing chemical reactions and dissecting their coupling to other processes, such as protein

conformational transitions or translocation of small molecules or ions. Therefore, compared

to the problem of enzyme catalysis, which also involves chemical reactions in biomolecules,

the topic of bioenergy transduction is arguably even more challenging as it requires method-

ologies that are able to bridge broader length and time scales. While striking the balance

between computational accuracy and efficiency is relevant to most biophysical problems,

its central role in the meaningful analysis of bioenergy transduction drives the develop-

ment and integration of multi-scale computational methodologies, including semi-empirical

quantum mechanical/molecular mechanical (QM/MM) methods(15), ab initio QM/MM

approaches(11) and more recently, machine learning (ML) techniques.

To illustrate the value and limitation of these methodologies, as well as strategies for

properly calibrating them in specific systems, we will discuss several recent applications in

the area of bioenergy transduction. Due to limited space, we will mainly focus on studies

in our own labs, although complementary efforts by others will also be mentioned. The

discussions will focus on steps that are most tightly coupled with the chemical reactions,
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while methodologies that tackle other steps such as large-scale conformational transitions

can be found in recent reviews by others(143, 135), including general conceptual issues

related to the efficiency of energy transduction(2, 126, 98). We will end with a brief outlook

that comments on future developments that will enable the analysis of increasingly complex

bioenergy transduction problems.

2. THEORY AND METHODS

To study biological processes driven by chemical reactions, the basic computational frame-

work is the hybrid QM/MM approach(149, 30) pioneered by Warshel, Levitt and Karplus,

who were awarded the Nobel Prize in Chemistry for their efforts. At the conceptual level,

the approach is intuitive: the reactive region of the system is treated at a QM level, while

the environment is described with a more simplified MM model. Through the contribu-

tions of many researchers, the QM/MM approach has become an indispensable tool for

the analysis of condensed phase problems(79, 54, 16), especially biomolecules(123). Re-

cent developments and applications, especially in chemical and enzymatic systems, have

been summarized in excellent review articles(83, 11); some of the remaining challenges have

also been discussed(20). In the following, we briefly touch upon several generally relevant

methodological issues.

Figure 1

Illustration of a typical QM/MM set-up using the analysis of the O→bR transition in
bacteriorhodopsin as an example. In the left panel, the QM region, which includes key amino

acids and water molecules, is highlighted in the licorice form, while the rest of the MM protein
environment is shown in transparent cartoon. As shown in the right panel, the entire protein is

then embedded in a solvated lipid bilayer; the lipids, water molecules and salt ions are also treated

at the MM level.

www.annualreviews.org • QM/MM Methods 3



2.1. QM/MM Methods for Ground Electronic States

In the most standard scheme applied to biomolecules (Fig. 1), the QM/MM energy is given

in the additive form,

ETot = 〈Ψ|ĤQM + Ĥ
QM/MM
elec |Ψ〉+ E

QM/MM
vdW + E

QM/MM
bonded + EMM , 1.

which indicates that the QM and MM atoms interact through electrostatic, van der Waals

and bonded terms; in most implementations, only the QM/MM electrostatic interaction (see

below) is included in the self-consistent determination of the QM region wavefunction, Ψ (or

the electron density), while the van der Waals and bonded terms are treated at the classical

force field level. When the QM/MM partitioning is conducted across a covalent bond (e.g.,

between Cα and Cβ atoms of an amino acid), link atoms(112, 22), frozen orbitals(34) or

pseudo potentials(162) are required to properly treat the boundary QM atoms; care needs

to be exercised to avoid artificial polarization of the QM atoms(1, 62), and it is generally

advised against partitioning across highly polar covalent bonds.

The proper QM level depends on the problem of interest. While ab initio or density func-

tional theory (DFT) are generally more reliable than semi-empirical QM methods, they are

computationally expensive. Even with modern hardwares, ab initio or DFT based QM/MM

simulations are typically limited to tens to hundreds of picoseconds of sampling(142), which

are usually too short for a reliable computation of equilibrium (e.g., free energy) or dy-

namical properties. Therefore, carefully calibrated semi-empirical QM methods remain an

attractive choice, especially for bioenergetics problems; in recent years, density functional

tight binding models(38, 15, 4) have emerged as promising choices in many applications.

An issue that has attracted much debate in recent years concerns the appropriate size of

the QM region(68, 96, 57, 31, 23, 24); with development of efficient algorithms and imple-

mentations on modern hardwares, it has become possible to conduct QM/MM simulations

with hundreds or thousands of QM atoms(142), or even with the entire system treated at

the DFT(150) or DFTB(102) level. The computational cost associated with such large QM

regions, however, limits the amount of conformational sampling. Therefore, depending on

the properties of interest, it is important to choose the QM region to best balance compu-

tational cost and sampling efficiency. For example, for the analysis of reaction mechanism

and free energy profiles, adequate sampling is essential; this is expected to be particularly

important to systems involved in bioenergy transduction, as the driving chemical reactions

often involve the migration of charged species (e.g., protons, electrons, metal ions) over a

long distance, thus there are significant protein and solvent responses that need to be cap-

tured with extensive sampling. For properties that are particularly sensitive to electronic

structure, such as NMR chemical shifts and hyperfine coupling constants, it is possible that

large QM regions are required(31, 122, 24).

Regarding QM/MM interactions, in the simplest model, the electrostatic Hamiltonian

(Ĥ
QM/MM
elec ) involves Coulombic interactions between the QM atoms (nuclei and electrons)

and fixed MM partial charges. At short QM-MM distances, however, the point charge

models for the MM atoms may lead to overpolarization of the QM atoms. Thus a more

physical model is to “blur” the MM charges as spherical Gaussians(22, 53).

It is increasingly realized that it is valuable to explicitly include electronic polarization

at the MM level. In recent years, substantial progress has been made in the systematic

parameterization and validation of polarizable MM force field models for biomolecules(55),

including, for example, the CHARMM-Drude model(74), AMEOBA(58), and SIBFA(100).

Improvements in computational efficiency and implementation on GPUs have made it possi-
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ble to conduct extensive molecular dynamics simulations for realistic biomolecules, including

the ribosome(69). The inclusion of electronic polarization is particularly relevant to a re-

liable treatment of bioenergy transduction, since many systems involve buried charges or

ion-pairs; as shown in a recent analysis(25), electronic polarization is critical to the de-

scription of the stabilization, conformational dynamics and hydration levels of these buried

charges or dipoles. In this context, while charge-scaling has been advocated as an empirical

approach for approximating the effect of electronic polarization(75, 28), such phenomenolog-

ical model may not be able to capture both energetic and dynamic properties correctly(18),

thus including the MM polarization explicitly in QM/MM simulations is preferable(81, 9).

2.2. QM/MM Methods for Excited Electronic States

Many bioenergy transduction processes are initiated by the absorption of photon, thus

the description of electronically excited states is required. Often, ground state structures

are QM/MM geometry optimized and the excited state can then be treated with a broad

set of QM methods that include, for example, time-dependent DFT (TD-DFT) or post-

Hartree-Fock methods. The typical errors for TD-DFT are in the range of 0.2–0.4 eV

for singly excited states, strongly depending on the functional applied. Pure GGAs tend

to have smaller errors, increasing with the amount of exact exchange. For example, an

error of 0.26 eV was reported for B3LYP for a set of medium sized molecules of biological

relevance(106); since this behavior is often systematic, a simple shift in energies can help

facilitate a comparison with experimental data. However, limitations of common functionals

and the adiabatic linear-response approximations are well known, especially for charge-

transfer and doubly excited states, which are not uncommon in biological systems(144, 27).

For some problems, range-separated functionals (LC-DFT) provide major improvements,

although not completely resolving the issues(56, 8).

The absorption spectrum is better computed by sampling of the ground state potential

energy surface and subsequent vertical excitation energy calculations, when nuclear quan-

tum effects can be neglected. Here, methods with significantly reduced computational cost

are needed, since convergence of the spectrum requires the calculation of hundreds or even

thousands of snapshots. Semi-empirical methods are therefore suitable for these type of ap-

plications, however, the computational challenges put also strong constraints on the choice

of methods, as discussed in detail for retinal proteins.(147) The Hartree-Fock based OM2

and OM3 methods within a MRCI implementation proved to be quite reliable, while the

DFT based linear response TD-DFTB method was not able to treat these types of systems.

They show the same failures as the GGA based TD-DFT methods. Long-range (LC) cor-

rected DFT functionals have been shown to ameliorate the problems, and LC-TD-DFTB

has been shown to be quite accurate for the calculation of absorption and fluorescence

properties(64, 127). However, the typical TD-DFT problems discussed for retinal proteins

and chlorophylls in detail, are not completely solved.(8).

Since the ground and excited states usually feature rather different electronic distribu-

tions, polarization of the MM environment was found to make a non-negligible contribution

to the excitation energy(145, 81, 9). It is worth noting that in some cases, force fields have

intrinsic limitations, such as for strong hydrogen-bonding interactions with the chromophore

(see examples below), thus calling for large QM regions in QM/MM simulations.

www.annualreviews.org • QM/MM Methods 5



2.3. Sampling Transitions and Dynamics Relevant to Chemistry in Biomolecules

For most problems in bioenergy transduction, the key quantity of interest is the underlying

free energy profile, which can be used to compute rate constants with well-accepted theo-

retical models such as the transition state theory(103). The rate constants can then be fed

into kinetic network models for gaining further mechanistic insights(133), such as dominant

kinetic pathway(s) and the overall time-scale and efficiency of energy transduction; in this

context, it is important to recall that rate constants depend exponentially on the free en-

ergy barrier, thus small errors in the computed barrier can lead to large errors in kinetics,

hence effective computational techniques for adjusting computed rate constants based on

experimental observables are highly valuable in this regard(133, 111). For the computation

of free energy profiles, in principle the methodologies commonly used for classical simula-

tions, such as metadynamics(140) and finite-temperature string(29) methods, are readily

adapted. The key difference lies in the choice of collective variables (CVs), which might

take unique forms for chemical processes. For example, charge centroids based on either

structural(61), charge(42, 87) or electron density(76) have been used to construct CVs for

studying long-range proton transfers.

Since QM/MM computations are generally more expensive than classical simulations, it

is worthwhile considering multi-level strategies. For example, semi-empirical QM methods

are usually more reliable for structural properties than for energetics. Thus, one effective

protocol(160) is to first sample the reaction pathway with, for example, DFTB/MM string

simulations; with configurations from the optimized minimal free energy path as the initial

guess, string calculations with a higher-level QM/MM potential are expected to converge

more rapidly for more accurate energetics. Alternatively, configurations from semi-empirical

QM/MM simulations can be used in conjunction with machine learning techniques to im-

prove energetics; see below for further discussions.

A particularly interesting topic concerns the direct simulation of sequential electron

transfers (ETs) in proteins, for which two of us have developed the Fragment Orbital Tight

Binding Density Functional Theory (FO-DFTB)(66, 65). In this quantum-chemical calcula-

tion, the quantum region is divided into several fragments, with the general idea to reduce

the computational cost as well as to allow for an easy and efficient parallelization. The

fragments are defined in such a way that any conjugated π-electron systems are kept intact,

so the electronic structure of the isolated fragments can be computed straightforwardly.

For biological ET, the fragments may be side chains of aromatic amino acids, peptide bond

moieties, or nucleic acid bases. Notably, while the electronic structure of a single fragment

is calculated, the other fragments as well as the entire condensed phase environment is

treated as point charges, so the fragment is polarized properly.

Next, the Hamiltonian (and overlap) matrices are set up in the basis of the computed

fragment orbitals, and they are further used to propagate the electron density corresponding

to the excess charge (electron or hole), by way of integrating a time-dependent Schrödinger

equation; one of the many available non-adiabatic propagation schemes can be used and

most common choices are the trajectory surface hopping and the mean-field Ehrenfest meth-

ods. The diagonal elements, (“site energies” representing the ionization potentials for hole

transfer or the electron affinities for excess electron transfer) as well as the off-diagonal

elements (“electronic couplings”) were benchmarked, and high accuracy was observed al-

though scaling is required in some cases(67, 41). Effectively, the entire molecular system,

with the exception of an excess electron or hole, is treated using a classical MM force field.

Note that this also includes the ET-active fragments at any moment that they do not carry
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any excess charge. For the purpose of analysis, the charge occupation (squared expansion

coefficient) of each fragment is recorded along the trajectories being performed. This value

ranges between 0 (neutral fragment) and 1 (fragment completely occupied by the hole or

excess electron being transferred). After averaging over the ensemble of simulations, the

time-dependent occupations can be fitted using a kinetic model(86) to obtain rate constants

of the forward and backward ET events.

2.4. Computation of Experimental Observables

It is critical to compute experimental observables so that computational results can be

validated and predictions tested. With QM/MM methods, a broad range of observables

can in principle be computed(19), ranging from various spectra through free energy re-

lations to kinetic isotope effects(35). As mentioned above, computed properties such as

rate constants, equilibrium constants and spectral densities can be fed into kinetic network

models (either classical or quantum(103)) for probing macroscopic features relevant to the

energy transduction process. The convergence of those observables depends on the system

and sometimes requires extensive sampling. For example, kinetic isotope effects can be

computed with path-integral techniques(92), which may require the equivalence of multiple

nanoseconds of sampling(116, 24), which is possible only with semi-empirical methods. The

computation of infrared spectra(107, 44), especially multi-dimensional ones(3), also requires

extensive sampling.

For semi-empirical methods, the trade-off between computational efficiency and accu-

racy is a matter of concern, however, well calibrated semi-empirical methods have been

shown to be very useful in interpreting and predicting spectral properties of complex sys-

tems. For example, the mid-IR C=O double bond vibration is highly sensitive to the

hydrogen bonding environment, showing red-shifts up to 50 cm−1 in strongly hydrogen

bonded systems relative to the gas phase, and an reparametrized semi-empirical method

has been shown to capture these shifts reliably(151), being able to resolve details of wa-

ter bridged hydrogen bonds between amino acids, which were experimentally difficult to

determine. This helped to differentiate between various intermediate structures in the bR

photocycle at different temperatures(155, 154).

Another frequently computed property for energy transfer (e.g., light-harvesting) sys-

tems is the spectral density, which describes the coupling of the nuclear degrees of freedom

to the electronic structure. In principle it can be computed from a time series of excitation

energies along a classical MD trajectory. However, since classical force fields often do not

capture the geometry of the chromophore reliably, spectral density computed using MD

trajectories sampled with classical force fields often suffers from the “geometry mismatch”

problem(90). Accurate spectral densities compared to experimental data were obtained

using a semi-empirical method specifically reparametrized for an accurate desription of

vibrational frequencies(90, 91).

2.5. Integration with Machine Learning

In recent years, machine learning (ML) has become an increasingly powerful tool in com-

putational analysis of molecular systems(104). In the context of QM/MM simulations

and bioenergy transduction, ML techniques are uniquely valuable in several areas (Fig.

2). First, ML techniques can be used to enhance the efficiency of free energy sampling,

especially when multiple collective variables(161) are potentially important to describing

www.annualreviews.org • QM/MM Methods 7



the coupling between the reaction and environmental degrees of freedom(6). Second, ML

methods can be used to improve the accuracy of semi-empirical QM/MM simulations via it-

erative “∆-learning”, in which configurations from “low-level” QM/MM (e.g., DFTB/MM)

trajectories are used to learn the differences (∆) from “high-level” QM/MM energies and

forces; the differences are then used to either directly estimate correction of the free energy

surface or re-sample the potential energy surface for improved free energies(124, 115, 43).

These “multi-level” free energy simulation methods have so far been applied to relatively

simple solution reactions(5), as learning the ∆ reliably for realistic systems with a large QM

region is, in fact, not straightforward and requires further developments. Finally, ML can

also be used to learn other properties, such as electronic coupling elements(63) or vertical

excitation energies(14) as functions of molecular configurations; training such ML models

can substantially reduce the cost of electron transfer and spectra calculations.

Figure 2

Machine learning (ML) techniques can be integrated with QM/MM simulations in diverse ways.

Left: Reinforcement learning and other techniques can be used to accelerate QM/MM free energy

simulations. The example shown here is the three-dimensional free energy surface for the
hydrolysis of methyl phosphate in solution at the DFTB3/MM level(20). Middle: Neural networks

using symmetry function representation of molecular structures are used in a ∆-ML scheme to

correct the energies yielded by DFTB3. Here, the qualitatively wrong DFTB3 energy landscape of
thiol–disulfide shuffling reaction (top) is corrected to agree with ab inition reference quantitatively

(bottom).(43) Right: Kernel ridge regression combined with the Coulomb matrix representation
was used to model the Hamiltonians describing ET processes in organic semiconductors. Shown is
the accuracy of prediction vs. reference for electron transfer site energies (top) and couplings

(bottom) for geometries taken from an MD simulation of crystalline anthracene.(63)

3. Application and Case Studies

In this section, we discuss several recent applications to illustrate the value and limitations of

QM/MM based simulations, including calibration of the methods in realistic applications for

meaningful mechanistic insights. Due to the sampling requirement of these applications, we

focus largely on DFTB/MM studies, although complementary efforts using other QM/MM

methods are also mentioned for comparison.
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3.1. Long-range Proton Transport in Proteins

3.1.1. Key Mechanistic Questions. Since the proton motive force plays key roles in bioen-

ergetics, long-range proton transports coupled with either photon absorption or electron

transfers are richly featured in bioenergy transductions. Representative examples include

bacteriorhodopsin (bR), Complex I, Complex IV (cytochrome c oxidase) and the F0F1-

ATPase. In terms of the key questions of common interest, these include: (1) What amino

acids/co-factors are involved as the proton donor, acceptor and mediating groups? This

is difficult to answer based on experiments alone because the positions of hydrogen atoms

are usually not visible in crystal or EM structures; mutation experiments and spectroscopic

data are potentially informative, although a molecular level interpretation is often not as

straightforward as it may appear. An example that we’ll touch upon below concerns the

proton storage group (PRG) in bR, which has attracted much attention in the past decades

till very recently(10). (2) Is there a single, dominant proton transfer pathway or many path-

ways are involved with similar fluxes? The typical approach for identifying potential proton

transfer pathway(s) is to focus on water wires that mediate proton transfers via the canon-

ical Grotthuss mechanism. As discussed in increasing number of studies(77, 13), however,

water wires in static crystal structures in the absence of the excess proton may not represent

the proton transfer pathway and very often multiple pathways may contribute. (3) Finally,

arguably the most puzzling question is what controls the gating of proton transfers(48); the

timing and directionality of long-range proton transfers lie at the heart of the efficiency of

bioenergy transduction, and understanding the underlying molecular mechanism requires

going beyond structural models to evaluate how thermodynamics and kinetics of proton

transfers are modulated by other events, such as reduction of nearby co-factors(46, 59) and

change in the local hydration level(108, 77, 128, 99).

3.1.2. Model Validation. Proton transfer energetics depend critically on the pKa values of

the donor, acceptor and mediating group(s). Therefore, microscopic pKa calculations are

essential validations for both the enzyme model (e.g., titration state of key residues) and

the computational (QM/MM) methodology(113). The prediction of reliable microscopic

pKa values relies on an accurate treatment of both proton affinity of the relevant titrat-

able group and its interaction with the protein environment while in different protonation

states. Moreover, the responses of the protein and internal water molecules to the change

of titration state also needs to be properly captured(163); these in general include both

dipolar reorientations and electronic polarization, which requires extensive conformational

sampling and treatment of electronic polarizability of the environment, respectively. In the

study of cytochrome c oxidase, for example, DFTB/MM based thermodynamic integration

simulations(40, 45) were used to probe the microscopic pKa value of the critical Glu286

residue, which was buried in a relatively hydrophobic internal cavity and thus featured a

rather shifted experimental pKa value of ∼9.7. DFTB/MM free energy simulations with dif-

ferent enzyme models and approximate treatments of electronic polarization(45) found that

reproducing the experimental pKa value required penetration of water molecules into the

cavity, which was coupled with the protonation of a propionate group of heme a3. Therefore,

in addition to serving as validation, microscopic pKa calculations can potentially provide

important mechanistic insights as well. Along this line, it is worth noting that microscopic

pKa calculations have also been used to calibrate reactive force field models (MS-EVB) for

studying proton transfers in solution and proteins(73).

www.annualreviews.org • QM/MM Methods 9



3.1.3. Example: the O to bR Transition in Bacteriorhodopsin. One prototypical example

of proton pumps is bacteriorhodopsin, whose photocycle features several proton transfer

reactions coupled to conformational transitions. Some of the few last remaining challenges

in the study of these complex processes were the atomic structure of the O state, especially

with regard to the hydration of the active site, and the mechanism of the conversion to

the ground state of bR, featuring a long-range proton transfer. Application of parallelized

DFTB3/MM metadynamics protocols as well as other extended sampling methods made it

possible to answer these questions with multi-dimensional free energy surfaces(88) (Fig. 3).

The thermodynamics and kinetics of the proton transfer was obtained in a good agree-

ment with experimental estimates, which underscored the credibility of the methodology

used. The reaction energy of −3.6 kcal/mol was consistent with the measure pKa differences

between D85 and the PRG. Concerning the kinetics, the obtained energy barrier translated

into a time scale of ca. 0.6 ms, which is in the range of experimental estimates.

Figure 3

DFTB3/MM free energy simulations reveal a proton hole mechanism for the O→bR transition in
bacteriorhodopsin(88), which involves a proton transfer from D85 to the PRG (E194, E204),

mediated by D212, cavity water and R82. A: The 3D free energy surface from ∼100 ns

multi-walker metadynamics simulations. The relevant states are labeled. B: Net charge of QM
water molecules. White: qnet = 0, neutral water; red: qnet = −1, OH−; blue: qnet = +1, H3O+.

C: Representative structures corresponding to the states identified in the free energy surface.
Green: proton bound to an Asp or Glu; orange: charged water species (here, always OH−).

The study(88) provided insight into the microscopic proton transfer mechanism and

the key structural patterns, regarding especially charged amino acid side chains and water

molecules, coupled to the actual proton transfer. The side chain of R82 sidechain switches

between two possible distinct orientations to stabilize specific negatively charged amino

acids: D85/D212 in the ground state bR, and PRG in the O state. Linked to that is the

control of the hydration level of the active site by means of the motion of the R82 side chain

and opening and closing of the PRG. The ground state bR features a low internal hydration

level due to the closed PRG, and there is no continuous water wire because of the intervening

R82 side chain. The latter feature helps prevent any wasteful back transfer of protons(48).

On the other hand, the O state has an elevated level of internal hydration, made possible

by the open PRG; a continuous water wire is formed between D85 and the PRG, allowed

by the reoriented side chain of R82. From a simple electrostatic perspective, the positive

charge of R82 may also aid the generation and transfer of the hydroxide ion, which was

observed in DFTB3/MM free energy simulations(88). The observation of the proton hole
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mechanism corroborates with the chloride pumping ability of the D85S mutant of bR,(119)

and with the similar mechanisms of bR and halorhodopsin, which feature conserved patterns

of electrostatic interactions between the transferred anion and the protein’s amino acid side

chains.(129)

3.1.4. Vibrational Spectra. Two examples concern vibrational bands in bacteriorhodopsin

from FT-IR studies by Gerwert and co-workers(37, 32). The first example focused on the

PRG (see Fig. 3C), whose identity has been debated for many years. Numerous crystal

structure, including the very recent high-resolution crystal structures for multiple kinetic

states(10), revealed a pair of glutamate residues (Glu 194, Glu204) whose sidechains are

extremely close to each other, with carboxylate oxygens merely separated by ∼2.4 Å. Such

unusual geometry together with mutation data suggested that the pair of glutamates are

involved in storing the proton. The FT-IR study of Gerwert and co-workers observed a

diffuse band around 2,000 cm−1, which is commonly observed in protonated water clusters.

Since a number of water molecules were observed near the pair of glutamates, it was initially

suggested that the proton was in fact stored on these water molecules in the form of a “delo-

calized” proton. This interesting hypothesis stimulated a set of computational studies using

different QM/MM methodologies and sizes of the QM region; nuclear quantum effects were

also evaluated with ring-polymer molecular dynamics(44). While it remains challenging

to exactly match experimental line shape, the latest DFT/MM simulations(136) continue

to support the model(107) in which the excess proton is delocalized between the pair of

glutamates, although nearby water molecules are clearly important to provide additional

stabilizations.

Another unique infrared signature in bR was observed for a number of water molecules

trapped between the protonated retinal Schiff base and deprotonated Asp96 in the N ki-

netic state(32). The vibrational peaks were observed around 2540-2775 cm−1, which is

substantially red-shifted compared to neutral water. DFTB3/MM simulations(153) were

able to capture the key experimental observation (Fig. 5A) and highlighted how the unique

environment of the water cluster led to its significant polarization and therefore dramatic

red-shift of the collective O-H vibration. An interesting observation was that the computed

line shape was sensitive to the number of water molecules in the “cavity”, since including

a larger number of water molecules perturbs the hydrogen bonding network and thus the

vibrational coupling between the strongly polarized water molecules. Therefore, by system-

atically comparing computed and measured vibrational spectra, one is potentially able to

characterize the structure and composition of water molecules in protein internal cavities,

which are difficult to accomplish otherwise, especially for transient kinetic states.

3.2. Fast Electron Transfer

3.2.1. General Remarks. Of perhaps even more importance in bioenergetics are electron

transfer (ET) processes as the primary “tool” of biological energy transduction. ET taking

place between an electron donor and an acceptor in a complex molecular environment may

be described with the Marcus theory.(103) For instance, Wu & van Voorhis developed a

scheme, based on constrained DFT, that generates the diabatic potential energy surfaces

needed in the Marcus theory to express the reaction and reorganization energies.(158, 157)

The application of constrained DFT was crucial as it turned out to effectively avoid the

over-delocalization problem of DFT.(156)

www.annualreviews.org • QM/MM Methods 11



Most biological ETs of interest, however, involve one or several electron relays, and a

condition for the applicability of the Marcus theory is that any reorganization processes

have finished completely before the subsequent ET event. Thus, the Marcus model works

for slow hopping ET but not for fast ones, where “slow” means that the individual events

are infrequent rather than that they would take a long time to complete. This was para-

phrased by Troisi as a “speed limit” for hopping transfer.(138) It appears that numerous

ET pathways in bioenergetics exceed this speed limit, and the temporal scales of the re-

organization and of the (relatively fast, or frequent) ET itself overlap. On the same note,

Matyushov et al. reasoned that the energy barriers to ET in proteins (as a representative

of a complex molecular system) are not real equilibrium quantities; rather, they depend on

the specific temporal scale of the ET reaction.(72) Such cases then need to be described by

more flexible methodologies that do not imply any separation of temporal scales.

Biomolecular ET has been a frequent subject of computational studies, and the state

of the art in 2015 was reviewed by Blumberger.(7) Fast ET has proven challenging to de-

scribe, but still it has been investigated using a few different approaches, usually employing

more advanced versions of the traditional ET models. For example, the light-driven ET in

multi-heme cytochrome STC from S. oneidensis in aqueous solution occurs on a scale of

several nanoseconds, and it was investigated by a combination of experimental and com-

putational techniques.(141) This work used a non-ergodicity correction by Matyushov,(94)

which removes the contribution of slow motions from the total reorganization energy. Also,

the dynamics of ultrafast ET in flavodoxin protein was shown to depend on its coupling to

environmental fluctuations.(85) This coupling reduces the reaction free energy as well as the

reorganization energy. Most recently, the mechanism of the highly efficient ET supported by

polymerized cytochrome OmcS in G. sulfurreducens was discovered.(21) The process takes

place over micrometers, with elementary hopping on sub-nanosecond scale – hence the no-

tion of “protein wire” – and accelerates upon cooling. On the other side of the spectrum of

computational methods is the study of sub-picosecond ET in a rhenium complex coupled

to the azurin protein from P. aeruginosa.(89) Computationally expensive combination of

surface hopping and hybrid-DFT based calculations of excited states were feasible given the

short temporal scale to cover, making it possible to reveal the mechanism of the reaction.

By comparison, our FO-DFTB approach relies on the simultaneous propagation of the

coupled electronic and nuclear degrees of freedom in a semi-classical fashion. This method

does not involve any assumption on the relative rates of the ET reaction and the relaxation

(reorganization) processes, making it possible to resolve any relevant temporal scales in an

unbiased manner. The efficiency of the method makes it possible to explicitly describe ET

processes on a nanosecond scale, as illustrated by the examples below.

3.2.2. Examples: Photolyases and Cryptochromes. We applied the FO-DFTB/MM

methodology to investigate multi-step ETs in the proteins of the photolyase cryptochrome

family (PCF), which are involved in DNA repair and in various signaling pathways. The

part of the photoactivation process in E. coli DNA photolyase, which constitutes an ET

along three conserved Trp side chains (ET from the protein surface to the FAD cofactor)

was investigated in our first study.(152) The ET was simulated on the naturally occurring

temporal scales without introducing any system-specific parameters, and a kinetic analysis

yielded rates in excellent agreement with experimental data. A detailed picture of the ET

process emerged, and it became clear that the second ET step may occur before the struc-

tural relaxation following the first ET step has completed. This illustrates the flexibility of
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Figure 4

Multi-scale non-adiabatic semi-classical simulations of electron transfer in complex and

bio-molecular systems involve a simultaneous propagation of the transferring electron and of the
protein dynamics. By doing so, they provide atomic-level insight into the coupling of these

processes. The example shown considers two different ET pathways in a photolyase protein

PhrA.(52) Left: Active site of PhrA, showing the amino acid side chain participating in the
branching electron transfer pathways. Center: Temporal course of the averaged occupation of the

individual participating amino acid side chains by the transferring electron hole, along the two

different pathways. Right: The kinetic scheme inferred from the temporal dependences of the
occupations reveals a possible mechanism of the kinetic and thermodynamic control of the ET

pathways in PhrA. All panels share the same color code to designate the different amino acid side

chain considered as electron relays.

the non-adiabatic simulation approach, which is applicable even in this case for which the

Marcus theory is not applicable, because of the non-equilibrium reaction conditions due to

the overlapping temporal scales of the processes involved (ET itself, delocalization of charge,

relaxation of protein, reorganization of solvent). As for the features of the ET in that pro-

tein and perhaps PCF in general, it was shown that it is the polarization of the solvent at

the surface of the protein that makes the process exergonic and thus uni-directional.

Then, we investigated the interesting case of a class III cyclobutane pyrimidine dimer

(CPD) photolyase from A. tumefaciens, which features not just one but two different,

branching ET pathways containing a total of six Trp side chains, which were both found to

play a role in the photoreduction of FAD.(52) We discovered an intriguing thermodynamic

and kinetic competition between the two pathways: one pathway supports a faster ET

while the other pathway stabilizes the final product better. This balance manifested itself

in our simulations by the electron hole first transferring along the “fast” Trp triad, before a

sequence of backward ET steps led to the transfer of the electron hole to the second pathway.

The whole process occurred on a temporal scale of nanosecond, and was accompanied by

complex repolarization of the environment (parts of the protein as well as, not least, water

molecules), emphasizing the need for a multi-scale computational description (Fig. 4).

3.3. Electronic Excitation

3.3.1. The challenge of excited states in biomolecules. The computational determination

of protein excited states is a significant challenge. The size of the chromophores requires

approximate methods like time-dependent density functional theory (TD-DFT) or more

approximate post-Hartree Fock methods like CC2 to be applied. In some cases, the deter-

mination of an optimized structure using QM/MM geometry minimization techniques may
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be sufficient when average and optimized structures agree sufficiently well. This is the case

for many retinal proteins like bR or ppR, as shown by explicit calculations (51). Here, the

active site is characterized by a very stable and strongly hydrogen bonded structure. We

note that force fields using fixed point charges, however, may have difficulties in describing

strongly hydrogen bonded complexes, therefore equilibrating the protein structure using

such force fields may lead to conformations that are not suitable for further QM/MM in-

vestigations; this problem was described recently for the ChR2 protein (49), as well as for

a Glucose binding protein (105). Due to the long sampling times required, the system then

requires using either a polarizable force field (105) or a semi-empirical QM/MM approach,

which has been shown to retain the active site structure well(49). In the latter case, how-

ever, a minimum energy structure may not be adequate, and absorption spectra have to be

computed by sampling excited states along QM/MM MD trajectories. (8).

All approximate quantum methods trade accuracy with computational efficiency, which

is particularly challenging for electronically excited states as mentioned in Sect.2.2. We

note, however, that the effects of approximations are already visible in the determination

of the ground state structures of conjugated electronic systems(147, 8), where the bond-

alternation (the difference of the bond-length of neighboring single and double bonds) is

sensitive to the method applied. This is important since the ground state structure also

determines the excited states properties, which calls for a careful choice of methods for

both ground and excited states calculations. Similarly, torsional angles and planarity of the

chromophore can be dependent on the approximation, which may also affect excited states

properties.

The problems of TD-DFT for excited states are nowadays well known, as recently dis-

cussed for the case of chlorophylls(114). Important to mention is the overestimation of

excited states energies, which leads to a blue shift in the computed spectra and is pro-

nounced for hybrid and long-range corrected functionals. This, however, is less problematic

since a systematic blue-shift can be corrected when comparing to experimental data. More

problematic is the inability of TD-DFT (or single reference methods in general) to describe

doubly excited states, and the problems with describing charge transfer states(27), which

have been seen for retinal proteins early on (144, 147). For retinal, this can result in a wrong

dependence of excitation energies on the chromophore structure, but also on the influence

of the protein electrostatic field. The development of long-range corrected (LC) TD-DFT

methods could partially resolve many of the TD-DFT problems. However, LC-TD-DFT

methods are far from being perfect for color-tuning studies in retinal proteins (see below),

still underestimating the response to the protein electrostatic field. Similar effects have

been reported for chlorophylls (8), and it can be expected to hold for other color pigments

as well.

3.3.2. Color tuning of excited states in biomolecules. Many photoactive biomolecules, like

rhodopsins (Rh), green fluorescent proteins (GFP) or Blue light using FAD (BLUF) proteins

contain one chromophore bound to a protein matrix. In contrast, light harvesting systems

like the Fenna-Matthews-Olson complex (FMO) or light-harvesting complex II (LH2) con-

tain several (chlorophyl) chromophors. The maximum absorption wave-length is determined

by several factors, which are: (i) the geometrical and electronic features of the chromophore,

(ii) the steric, electrostatic and hydrogen bonding interactions with the environment and

(iii) a possible coupling between the chromophores within the protein complexes.

Due to their diverse molecular and electronic structure, the various chromophores have
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very different absorption maxima in gas phase, but also very different responses to steric

and electrostatic interactions with their environments. A steric interaction with nearby

protein groups can twist the often planar structure, thereby disturbing the conjugation of

the delocalized electronic system. Through hydrogen bonding, as in the case of the retinal

Schiff base in retinal proteins, the localization of charge on the chromophore can be strongly

affected, leading to large color shifts. Electrostatic interactions with the environment can

lead to a further color shift, when ground and excited states have different dipole moments.

Polarizable residues, in particular in the immediate vicinity of the chromophore, can lead to

a polarization-shift. Retinal proteins, for example, absorb in a range of 300-700 nm, which

illustrates the immense tunability due to a very sensitive response to external electrostatic

potentials(51, 8) , while it is much less for most other chromophores. For example, in Ref.

51, the color shift of 70 nm between bR and ppR (phoborhodopsin) has been investigated; it

was found that the shift was partly due to the different hydrogen bonding networks around

the retinal and partly due to the different electrostatic fields from the protein environment

(Fig. 5). In multi-chromophoric systems like LH2, close-lying chromophores lead to a cou-

pling of excited states, i.e., a delocalization of the excited states over several chromophores,

which results in a red shift of about 50 nm in LH2(80, 8, 70, 125).

The impact of polarization on retinal excited state properties has been emphasized

by Warshel and coworkers early on (148) and has then been investigated in detail using

quantum mechanical and polarizable force field methods(145, 146). Including polarization

allows to compute accurate absolute excitation energies, when a reliable and well calibrated

ab initio method like SORCI is used for the QM region. This allowed to determine pro-

tonation states of protein side chains (33) and discriminate between different structural

models proposed for early intermediates of the bR photocycle(155, 154). Several other im-

plementations of QM/MM with polarizable force fields have been reported so far(81, 9). For

chlorophylls(82) in LH2, interestingly, direct electrostatic interactions seem to cancel the

polarization response, therefore it was suggested to rather neglect the direct electrostatic

interaction when not including polarization.(17)

3.4. Mechanochemical Coupling

3.4.1. Key Mechanistic Questions. Many bioenergy transduction processes in cells are

driven by the binding and hydrolysis of NTP (e.g., ATP or GTP). While in many cases,

large-scale conformational transitions have been established to be coupled directly to the

binding of NTP and/or dissociation of hydrolysis products, it is an intrinsically interesting

question how the hydrolysis of NTP is coupled with the conformational state of biomolecule.

Indeed, if the coupling were weak, futile nucleotide hydrolysis would occur, leading to re-

duced thermodynamic efficiency of the energy transduction(50). In addition to the more

visible conformational transitions, other more subtle changes may make notable contribu-

tions to the chemical step. For example, an emerging theme in nucleic acid enzymes such as

DNA polymerases and RNase H is that transient cation recruiting into the active site may

play a major role in activating the chemical step(121, 159). For example, in the DNA poly-

merase η, time-resolved crystallography has captured the presence of the third Mg2+ ion

during the nucleotide addition process(36). Whether the third Mg2+ is essential to lowering

the activation barrier of nucleotide addition or its main role is to stabilize the product has

been debated. Nevertheless, the importance of such transiently recruited metal ion (i.e.,

not highly populated in the ground state structure) to the chemical activity has been well
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Figure 5

QM/MM calculations help explain shifts in vibrational and electronic spectra in retinal proteins.
Left: A water cluster in the N state of bR has a unique local environment that leads to significant

red-shifts of the computed (DFTB3/MM) vibrational spectra, in agreement with experimental

observations(153). Right: Difference in the hydrogen-bonding networks in the active sites of bR
and ppR lead to significant shifts in the computed S0-S1 transitions: the histograms for bR (red)

and ppR (green) are based on OM2/MRCI calculations sampled along ground state classical MD

trajectories(51).

received(110, 93). After all, it is common to invoke change of protonation state of active

site residues for efficient catalysis in enzymes, despite the fact that the concentration of

protons is often substantially lower than those for common metal ions under physiological

conditions.

In short, the key mechanistic questions commonly encountered in biomolecular machines

using NTP as “fuels” include: (1) In what conformational state does the chemical step (e.g.,

ATP hydrolysis) occur? (2) What are the roles of the key regulatory events, which are likely

local in nature, such as closure of the nucleotide binding pocket, reduction of the level of local

hydration, and recruitment of additional metal ion(s)? (3) How are these local regulatory

transitions coupled to the more global conformational transitions, so as to ensure a tight

mechanochemical coupling and therefore a high thermodynamic efficiency of the bioenergy

transduction process?

3.4.2. Model Validation. Since nucleotide hydrolysis is the driving reaction for many

biomolecular machines, it is important to calibrate the QM/MM methodology for phos-

phoryl transfer chemistry(118). This has been a challenging task due to the highly charged

nature of phosphates and existence of multiple competing mechanisms(71, 60), which place

major demands in both computational accuracy and sampling efficiency. In addition to

energetic properties, kinetic isotope effects are valuable for confirming that the nature of

transition state is adequately captured(71, 116).
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3.4.3. Competing Pathways and Mechanochemical Coupling. To illustrate the value of

QM/MM simulations to the analysis of chemical steps in biomolecular machines, we briefly

discuss two recent examples (Fig. 6). The first is a classical biomolecular motor, myosin II,

in which the hydrolysis of ATP requires closure of the active site, which in turn is coupled

with the remarkable rotation of the converter domain more than 40 Å away(134). Since our

QM/MM analysis of myosin(84) has been summarized in several recent articles(118, 20),

we only highlight two key points here. First, even with the crystal structure that features

a fully closed active site (pre-powerstroke state), DFTB3/MM simulations were able to

identify several reaction pathways for the hydrolysis of ATP that have rather similar rate-

limiting free energy barriers. These pathways differ in terms of the mechanism through

which the lytic water deprotonates to generate the strong nucleophile (OH−) and the routes

that the ionized proton takes to reach the hydrolysis product, the inorganic phosphate

and ADP. The observation highlights that even in enzyme active sites that have been

“optimized” by evolution, competing pathways exist, thus it is essential to develop (almost)

automated methodologies for the exploration of reaction pathways with little prior human

biases. Along this line, the computational efficiency of DFTB3/MM approach was essential

to the successful integration between metadynamics and finite temperature string methods

for the exploration of alternative reaction mechanisms(84).

Another unique piece of insight was obtained by studying the hydrolysis energetics in

an artificial “hybrid” construct that featured a closed active site in a post-rigor state of the

myosin motor domain; this model was established to explicitly probe the coupling between

ATP hydrolysis and distal conformational transitions. As shown in Fig. 6A-D, although

the hybrid and pre-powerstroke active sites feature essentially the same set of first coor-

dination shell interactions for the lytical water and the γ-phosphate, the computed free

energy profiles differ significantly in terms of both the rate-limiting barrier height and the

overall exergonicity; both quantities are less favorable by ∼ 9 kcal/mol for the hybrid struc-

tural model. This result clearly underscores the notion that reaction free energy profiles in

enzyme active sites are not solely determined by first-shell interactions. In particular, in

the absence of conformational transitions beyond the active site, the reactive moieties and

catalytic motifs (e.g., Switch II) in the hybrid model are surrounded by a cluster of water

molecules, which are not observed in the pre-powerstroke state. As a result, the active

site is less pre-organized in the hybrid model, leading to less favorable reaction energetics.

This observation is reminiscent of the results from recent computational analysis of loop

closure in triose phosphate isomerase(78); it was found that the proton transfer energetics

remained largely similar to the bulk values as far as a few water molecules were trapped

in the active site, even with the “lid” loop adopting essentially the fully closed configura-

tion. Evidently, establishing a well pre-organized active site for efficient catalysis requires

conformational rearrangements beyond the nearest neighbors of the catalytic motifs, which

together with cooperative conformational transitions form the basis of mechanochemical

coupling in biomolecular machines.

As a second example, we briefly discuss DNA polymerase η, especially the role of the

third Mg2+ ion in nucleotide addition. While energy transduction is not the primary func-

tion of DNA and RNA polymerases, they are no doubt sophisticated biomolecular machines

in that their functional cycles involve complex and coordinated structural transitions at dif-

ferent spatial and temporal scales; the goal of many mechanistic studies is to establish the

driving force and functional significance of these structural transitions(139). For DNA

polymerase η, a much debated issue in recent years concerns the role of the third Mg2+
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Figure 6

QM/MM studies of reaction mechanisms in biomolecular motors myosin(84) (A-D) and DNA

polymerase η(117) (E). A. The pre-powerstroke state based on the crystal structure of the myosin
motor domain complexed with ADP·vanadate (PDB code: 1VOM); B. A computational “hybrid”

model, in which the active-site protein residues are restrained to adopt the structure of the

pre-powerstroke state, while the rest adopts the post-rigor crystal structure (PDB code: 1FMW).
C-D. Free energy profiles computed for the two structural models based on DFTB3/MM string

calculations. Note that although the active-site structures are very similar in the two models, the

hydrolysis free energy profiles are significantly different. E. Mechanism, transition state structure,
and free-energy surfaces for a mechanism with a Mg2+-coordinated hydroxide as the base under 4

different conditions: 2 Mg2+ and deprotonated leaving group, 3 Mg2+ and deprotonated leaving
group, 2 Mg2+ and protonated leaving group, 3 Mg2+ and protonated leaving group.

ion identified in time-resolved crystallography studies(36); a closely related question con-

cerns the timing of the deprotonation of the 3’-OH in the terminal base, for which multiple

mechanisms have been put forward(39). To shed light onto these issues, we have conducted

extensive free energy simulations using DFTB3/MM following model calibration, includ-

ing microscopic pKa calculations for both model compounds and enzyme active sites(117).

By systematically comparing free energy profiles for ten plausible mechanistic models, we

found that the lowest activation barrier occurred for a reaction where a Mg2+-coordinated

water deprotonates the nucleophilic 3’-OH in concert with the phosphoryl transfer step.

The presence of a third Mg2+ in the active site was observed to indeed lower the activation

barrier for the water-as-base mechanism, as did protonation of the pyrophosphate leaving

group. This mechanistic model, which does not invoke any specific protein residue as the

catalytic base to activate 3’-OH, is consistent with a recent study(47) that systematically

removed potential hydrogen-bonding partners of the 3’-OH; it was observed that no single

or combined perturbations eliminated the catalytic activity; i.e., neither the proton accep-

tor nor the departure path of the nucleophile deprotonation is fixed. These observations

supported a model in which the 3’-OH deprotonation does not require a specific general

base and it is readily activated by the three Mg2+ ions with flexible proton exit routes.

DFT/MM simulations have also been employed to probe various mechanistic issues in

related systems(95, 132, 137, 130, 6, 39, 26, 109), sometimes reaching similar conclusions,

such as the key features of ATP/GTP hydrolysis transition states in biomolecular motors(95,
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132, 137, 109) and the role of the third Mg2+ ion in DNA polymerase η(130). In other

cases, different conclusions were drawn, such as the mechanism of 3’-OH deprotonation

in DNA polymerase(39). With substantial differences in the time scale of sampling and

general computational accuracy between DFT/MM and DFTB/MM simulations, it remains

difficult to resolve discrepancies based solely on computational results; as emphasized in

many studies, it is imperative to view the computational results in the context of available

experimental data, and only by combining information obtained from experiments with

that obtained from simulation can we obtain microscopic answers to questions of chemical

reactivity in complex settings.

4. Conclusions and Outlooks

In this review article, we have discussed QM/MM methods and their applications to var-

ious bioenergy transduction processes, such as long-range proton transport, fast electron

transfers and nucleotide hydrolysis. These applications require balancing computational

efficiency and accuracy for the system of interest, making semi-empirical QM/MM models

particularly valuable, although calibration and comparison to higher-level QM/MM meth-

ods is indispensable. Looking forward, there are several areas that can benefit further efforts

to make such QM/MM analyses more quantitative and applicable to increasingly complex

problems.

First, further improvements in both semi-empirical and ab initio QM methods, especially

for transition metal ions and non-covalent interactions, are of major significance, since

many systems in bioenergetics involve metal co-factors and require treating a large number

of atoms at the QM level for the description of long-range proton/electron transfers or

mechanochemical coupling; further integration with machine learning techniques is likely

required to reach quantitative accuracy for these challenging problems.

Second, for the MM region, it is important to further enhance not only the accuracy

(e.g., an explicit consideration of electronic polarization) but also complexity that better

represents the working environment of the biomolecular machine(s) under investigation.

Examples for the latter includes representation of the transmembrane potential, pH gradient

and molecular crowding. In other words, the general aim is to develop truly multi-scale

computational models that enable the analysis of energy transduction under realistic cellular

conditions.

Finally, while providing a better understanding of experimental observations remains a

major goal for computational studies, we believe “blind” predictions will play an important

role in critically evaluating different QM/MM methodologies, similar to such efforts in the

areas of protein structure prediction (CASP, CAPRI) and ligand binding (SAMPLX). As

QM/MM calculations become increasingly affordable and standardized, along with advances

in high-throughput experiments(97) that are able to efficiently generate a large amount of

data, the time might be ripe for initiating such efforts in the QM/MM community.
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87. Maag D, Böser J, Hourahine B, Elstner M, Witek HA, Kubař T. 2022. Mechanism of proton-
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