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The closed-shell CCSD-R12 Ansatz

• CCSD-R12 theory has been implemented in a spin-free
closed-shell fashion as well as in a spin-orbital formalism.

• Here, we focus on the closed-shell CCSD-R12 method,
where the cluster operator T̂ is written as

T̂ = T̂1 + T̂2 + T̂2′

T̂1 = tai Eai

T̂2 = tab
ij EaiEbj

T̂2′ = tαβ
ij EαiEβj = cmn

ij rαmβnEαiEβj

• Summation over repeated indices is assumed (Einstein
summation convention).

• The indices α and β refer to a complete basis of virtuals.



Correlation functions
• The two-electron integrals

rαmβn = 〈αβ|Q̂12f12|mn〉
contain the projection operator Q̂12 and the correlation
function f12, which is a function of the interelectronic
distance r12. Examples are:

f12 = f(r12) = r12

f12 = f(r12) = exp(−γr12)

f12 = f(r12) = ck exp(−γkr
2
12)

f12 = f(r12) = ckr12 exp(−γkr
2
12)

• The form of the correlation function f12 will only become
important later.

Ansätze 1 and 2

• The projection operator Q̂12 can be chosen in two
manners, which are referred to as Ansatz 1 and Ansatz 2,

Q̂12 =


Q̂(1)

12 = (1− P̂1)(1− P̂2) Ansatz 1

Q̂(2)
12 = (1− Ô1)(1− Ô2)− V̂1V̂2 Ansatz 2

• The projectors are:

P̂ = |φp〉〈φp| is the projector onto the whole finite space

V̂ = |φa〉〈φa| is the projector onto the virtual space

Ô = |φi〉〈φi| is the projector onto the occupied space



Ansätze 1 and 2 (continued)

• Within the complete basis {φα}nocc+1...∞ of virtual orbitals, there
are virtual orbitals {φa}nocc+1...nbas inside the finite basis and
virtual orbitals {φα⊥}nbas+1...∞ outside the finite basis,

{φα} = {φa} ∪ {φα⊥}

Q̂(1)
12

∑
αβ

|αβ〉 =
∑

α⊥β⊥
|α⊥β⊥〉

Q̂(2)
12

∑
αβ

|αβ〉 =
∑

α⊥β⊥
|α⊥β⊥〉+

∑
aβ⊥

|aβ⊥〉+
∑
α⊥b

|α⊥b〉

Double excitations with one or two virtuals outside the finite
space are generated in Ansatz 2, whereas Ansatz 1 is restricted
to excitations with both virtuals in the orthogonal complement.

The CCSD-R12 energy

• The CCSD-R12 energy can be written as

ECCSD-R12 = EHF + 1
2 〈HF|[[Ĥ, T̂1], T̂1] + [Ĥ, T̂2] + [Ĥ, T̂2′ ]|HF〉

= ECCSD + ∆ER12

• Our task is to evaluate the R12 contribution

∆ER12 = 1
2cij

mnrαmβn〈HF|[Ĥ, EαiEβj ]|HF〉

with the Hamiltonian

Ĥ = hnuc + hκλEκλ + 1
2gκλµν eκλµν

The Greek letters κ, λ, µ, ν denote a complete basis.

• 〈HF|[Ĥ, EαiEβj ]|HF〉 must be evaluated
in the complete Fock space.



The CCSD-R12 energy

• We know from standard CCSD theory that

〈HF|[Ĥ, EaiEbj ]|HF〉 = 2Liajb = 4giajb − 2gibja

Hence, the R12 contribution is

∆ER12 = cmn
ij rαmβnLiαjβ

• If we define the amplitudes tαβ
ij = cmn

ij rαmβn,
we can write the CCSD-R12 energy as

ECCSD-R12 = EHF + (tab
ij + tai t

b
j)Liajb + tαβ

ij Liαjβ

The CCSD-R12 singles projection

• In terms of the T1-transformed Hamiltonian ˜̂H, we find

Ωai =

〈
ā

i

∣∣∣ ˜̂H + [ ˜̂H, T̂2 + T̂2′ ]
∣∣∣ HF

〉
= ΩCCSD

ai + ΩR12
ai

ΩR12
ai =

〈
ā

i

∣∣∣[ ˜̂H, T̂2′ ]
∣∣∣ HF

〉

Term CCSD part Corresponding R12 contribution

ΩA1
ai ucd

ki g̃adkc uγδ
ki g̃aδkγ = (2cmn

ki − cmn
ik ) rγmδn g̃aδkγ

ΩB1
ai −uac

kl g̃kilc −uaγ
kl g̃kilγ = −(2cmn

kl − cmn
lk ) ramγn g̃kilγ

ΩC1
ai uac

ik
IF̃kc uaγ

ik
IF̃kγ = (2cmn

ik − cmn
ki ) ramγn

IF̃kγ

ΩD1
ai

IF̃ai 0



Recipe for deriving the CCSD-R12 equations

• Using a complete Fock space, the CCSD-R12 equations
are easily derived by a correspondence principle. Virtual
indices ab in doubles amplitudes tab

ij in the conventional
formulation must be replaced by those of the complete
basis αβ.

• Amplitudes tαβ
ij , taβ

ij , and tαb
ij must be identified with

cmn
ij rαmβn, cmn

ij ramβn, and cmn
ij rαmbn.

• In Ansatz 1, all integrals rαmβn are zero except rα⊥mβ⊥n.

Matrix elements V rs
pq

• In the following, we shall use a compact notation for
products of the two-electron integrals rαpβq and grαsβ,

rαpβqgrαsβ = V rs
pq

• Hence,

∆ER12 = cmn
ij rαmβn(2giαjβ − giβjα) = (2cmn

ij − cmn
ji )V ij

mn

ΩA1-R12
ai = (2cmn

ki − cmn
ik ) rγmδn g̃aδkγ = (2cmn

ki − cmn
ik )V ãk

nm

= (2cmn
ik − cmn

ki )V ãk
mn

• In first quantization,

V rs
pq = 〈pq|f12Q̂12r

−1
12 |rs〉



Complementary auxiliary basis set (CABS)

• The ΩB1-R12
ai and ΩC1-R12

ai terms of the singles vector function
cannot be expressed in terms of the V intermediate.

• Two-electron integrals with one index in the
complementary virtual space are approximated by
inserting an orthonormal, finite complementary auxiliary
basis set (CABS),

{φp′}1...ncabs , 〈φp|φq′〉 = 0, 〈φp′ |φq′〉 = δp′q′

• For example,

ΩB1-R12
ai =


0 in Ansatz 1

−(2cmn
kl − cmn

lk )ramp′n gkĩlp′ in Ansatz 2

The C1 term of the singles vector function

• Using the CABS, the C1 term of the singles vector function
becomes

ΩC1-R12
ai =


0 in Ansatz 1

(2cmn
ik − cmn

ki )ramp′n
IF̃kp′ in Ansatz 2

• The matrix IF̃ is the standard inactive Fock matrix
calculated from the T1-transformed one- and two-electron
integrals,

IF̃kp′ = hkp′ + 2gkp′ ĩi − gkĩip′

= IFkp′ + (2gkp′ic − gkcip′)t
c
i



Three-electron integrals

• Thus far, we have introduced only one approximation, and
only in the framework of Ansatz 2.

• This approximation concerns ΩB1-R12
ai and ΩC1-R12

ai .

• For example, the exact evaluation of ΩB1-R12
ai requires the

computation of three-electron integrals,

ramγn gkĩlγ = ramγ⊥n gkĩlγ⊥

= 〈mnĩ|f12r
−1
23 |alk〉 − 〈mn|f12|ap〉〈p̃i|r−1

12 |lk〉
= 〈mnĩ|f12r

−1
23 |alk〉 − fampn gkĩlp

• The key to the success of the R12 methods is the
introduction of an approximation that avoids the evaluation
of three-electron integrals.

The standard approximation (SA)

• In R12 theory, the three-electron integrals are computed by
inserting a resolution-of-the-identity (RI) approximation, that is

1 ≈ |p′′〉〈p′′|
where {p′′}1...nabs is an orthonormal auxiliary basis set (ABS).

• Here and in the following, we choose this ABS as the union of
the finite basis and the CABS,

{φp′′}1...nabs = {φp}1...nbas ∪ {φp′}1...ncabs

• Inserting the RI approximation into the three-electron integrals
leads to

〈mnĩ|f12r
−1
23 |alk〉 ≈ famp′′n gkĩlp′′



Standard approximation for V rs
pq

• The projection operators

Q̂12 =

 Q̂(1)
12 = (1− P̂1)(1− P̂2) Ansatz 1

Q̂(2)
12 = (1− Ô1)(1− Ô2)− V̂1V̂2 Ansatz 2

lead to three-electron integrals, which are computed using the
standard approximation,

(1− P̂1)(1− P̂2) ≈ 1− P̂1P̂2 − P̂1P̂
′
2 − P̂ ′1P̂2

(1− Ô1)(1− Ô2)− V̂1V̂2 ≈ 1− P̂1P̂2 − Ô1P̂
′
2 − P̂ ′1Ô2

• Clearly, there is no difference between Q̂(1)
12 and Q̂(2)

12 when
CABS is not used.

Standard approximation for V rs
pq

• SA for V rs
pq in Ansatz 1:

〈pq|f12Q̂
(1)
12 r−1

12 |rs〉 ≈ 〈pq|f12(1− P̂1P̂2 − P̂1P̂
′
2 − P̂ ′1P̂2)r

−1
12 |rs〉

= 〈pq|f12r
−1
12 |rs〉

− fpvqw gvrws − fpv′qw gv′rws − fpvqw′ gvrw′s

• SA for V rs
pq in Ansatz 2:

〈pq|f12Q̂
(2)
12 r−1

12 |rs〉 ≈ 〈pq|f12(1− P̂1P̂2 − Ô1P̂
′
2 − P̂ ′1Ô2)r

−1
12 |rs〉

= 〈pq|f12r
−1
12 |rs〉

− fpvqw gvrws − fpv′qi gv′ris − fpiqw′ girw′s



Standard approximation for r12Q̂
(2)
12 r−1

12

• For He in the cc-pVTZ basis, the three-electron integral
〈11|r12Q̂

(2)
12 r−1

12 |11〉 can be evaluated analytically.

• It amounts to 〈11|r12Q̂
(2)
12 r−1

12 |11〉 = −0.147 806 6 a.u.

• Using an ABS, this integral is computed as follows:

ABS 〈11|r12Q̂
(2)
12 r−1

12 |11〉 Error

4s (uncontracted cc-pVDZ) −0.148 427 4 −0.42%
6s (uncontracted cc-pVTZ) −0.147 858 3 −0.035%
7s (uncontracted cc-pVQZ) −0.147 789 8 0.011%
8s (uncontracted cc-pV5Z) −0.147 769 7 0.025%

10s (uncontracted cc-pV6Z) −0.147 751 9 0.037%

SA w/CABS for r12Q̂
(2)
12 r−1

12

• For He in the cc-pVTZ basis, the three-electron integral
〈11|r12Q̂

(2)
12 r−1

12 |11〉 can be evaluated analytically.

• It amounts to 〈11|r12Q̂
(2)
12 r−1

12 |11〉 = −0.147 806 6 a.u.

• Using a CABS, this integral is computed as follows:

CABS 〈11|r12Q̂
(2)
12 r−1

12 |11〉 Error

4s (uncontracted cc-pVDZ) −0.147 828 9 0.015%
6s (uncontracted cc-pVTZ) −0.147 858 3 0.035%
7s (uncontracted cc-pVQZ) −0.147 812 4 0.004%
8s (uncontracted cc-pV5Z) −0.147 808 6 0.001%

10s (uncontracted cc-pV6Z) −0.147 808 6 0.001%



Standard approximation for r12Q̂
(2)
12 r12

• For He in the cc-pVTZ basis, the three-electron integral
〈11|r12Q̂

(2)
12 r12|11〉 can be evaluated analytically.

• It amounts to 〈11|r12Q̂
(2)
12 r12|11〉 = 0.150 750 9 a.u.

• Using an ABS, this integral is computed as follows:

ABS 〈11|r12Q̂
(2)
12 r−1

12 |11〉 Error

4s (uncontracted cc-pVDZ) 0.199 670 2 32%
6s (uncontracted cc-pVTZ) 0.154 384 5 2.4%
7s (uncontracted cc-pVQZ) 0.151 357 9 0.40%
8s (uncontracted cc-pV5Z) 0.150 974 6 0.15%

10s (uncontracted cc-pV6Z) 0.151 606 1 0.57%

SA w/CABS for r12Q̂
(2)
12 r12

• For He in the cc-pVTZ basis, the three-electron integral
〈11|r12Q̂

(2)
12 r12|11〉 can be evaluated analytically.

• It amounts to 〈11|r12Q̂
(2)
12 r12|11〉 = 0.150 750 9 a.u.

• Using a CABS, this integral is computed as follows:

CABS 〈11|r12Q̂
(2)
12 r12|11〉 Error

4s (uncontracted cc-pVDZ) 0.150 872 1 0.080%
6s (uncontracted cc-pVTZ) 0.154 384 5 2.4%
7s (uncontracted cc-pVQZ) 0.150 771 1 0.013%
8s (uncontracted cc-pV5Z) 0.150 766 9 0.011%

10s (uncontracted cc-pV6Z) 0.150 760 4 0.006%



The vector function Ωaibj

• To illustrate the derivation of the CCSD-R12 equations, we focus
in the following on Ansatz 1.

• The equations for Ansatz 2 are left as an excercise.

• All of the equations can be derived from the standard CCSD
equations,

Ωaibj = ΩA2
aibj + ΩB2

aibj + P ab
ij

(
ΩC2

aibj + ΩD2
aibj + ΩE2

aibj

)
with

P ab
ij Aab

ij = Aab
ij + Aba

ji

• The R12 contributions to the conventional Ωaibj vector function
are obtained by virtue of the correspondence principle. Doubles
amplitudes tab

ij in the conventional formulation must be replaced
by those of the complete basis αβ.

The conventional vector function Ωaibj

ΩA2
aibj = g̃aibj + tcd

ij g̃acbd

ΩB2
aibj = tab

kl

(
g̃kilj + tcd

ij g̃kcld

)
ΩC2

aibj = − 1
2 tbc

kj

(
g̃kiac − 1

2 tad
li g̃kdlc

)− tbc
ki

(
g̃kjac − 1

2 tad
lj g̃kdlc

)
ΩD2

aibj = 1
2ubc

jk

(
L̃aikc + 1

2uad
il L̃ldkc

)
ΩE2

aibj = tac
ij

(
IF̃bc − ubd

kl g̃ldkc

)− tab
ik

(
IF̃kj + ucd

lj g̃kdlc

)
• The intermediates L and u are defined as before,

Lpqrs = 2gpqrs − gpsrq, uab
ij = 2tab

ij − tab
ji

• In Ansatz 1, the R12 contributions to the conventional vector
function Ωaibj are obtained from the terms with tcd

... or ucd
... .



R12 contributions to Ωaibj in Ansatz 1

ΩA2-R12
aibj = tγδ

ij g̃aγbδ = cmn
ij rmγnδ g̃aγbδ = cmn

ij V ãb̃
mn

ΩB2-R12
aibj = tab

kl t
γδ
ij g̃kγlδ = tab

kl c
mn
ij rmγnδ g̃kγlδ = tab

kl c
mn
ij V kl

mn

ΩE2-R12
aibj = −tab

ik

(
2tγδ

lj − tγδ
jl

)
g̃kδlγ

= −tab
ik

(
2cmn

lj − cmn
jl

)
rmγnδ g̃kδlγ

= −tab
ik

(
2cmn

lj − cmn
jl

)
V kl

nm = −tab
ik

(
2cmn

jl − cmn
lj

)
V kl

mn

• Before we proceed, we shall investigate the CC2-R12 model.

• Moreover, it is worthwile to rewrite the above equations explicitly
for a two-electron system, where c11

11V
11
11 is the R12 contribution

to the energy.

CID-R12 eigenvalue equation for two electrons
• The explicitly-correlated configuration-interaction-with-doubles

(CID-R12) eigenvalue equation for a two-electron system can be
written in matrix form as follows: 0 V gT

V HR12 − EHF VT

g V Hconv − EHF

  1
c
t

 = ∆E

 1
c
t


• Thus, the conventional doubles equation reads

g + Vc + (Hconv − EHF) t−∆Et = 0

• The R12 contributions to this equation are

Vc−∆ER12t = ΩA2-R12
a1b1 + ΩB2-R12

a1b1 + 2ΩE2-R12
a1b1 = c11

11V
ab
11 − tab

11c
11
11V

11
11



T1 transformation of the Fock operator

• The idea of the CC2 model is to partition the Hamiltionian in the
Møller–Plesset manner into the Fock operator f̂ and the
fluctuation potential Φ̂ = Ĥ − F̂ − hnuc.

• Hence, we need to investigate the T1 transformations of f̂ and Φ̂
separately.

• Concerning ˜̂f , we find

˜̂f = exp(−T̂1)f̂ exp(T̂1) = f̂ + [f̂ , T̂1]

[f̂ , T̂1] = tai
IFκλ[Eκλ, Eai] = tai

(
IFκaEκi − IFiλEaλ

)
• Assuming canonical orbitals, working onto the Hartree–Fock

state yields

[f̂ , T̂1]|HF〉 = tai (εa − εi)Eai|HF〉+ tai
IFα⊥aEα⊥i|HF〉

The similarity-transformed Fock operator

• In the CCSD-R12 model, the similarity-transformed Fock
operator is

e−T̂1−T̂2−T̂2′ f̂ eT̂1+T̂2+T̂2′ = f̂ + [f̂ , T̂1] + [f̂ , T̂2] + [f̂ , T̂2′ ]

• The commutators with T̂2 and T̂2′ give rise to

[f̂ , T̂2]|HF〉 = tab
ij (εa + εb − εi − εj)EaiEbj |HF〉

+ tab
ij

(
IFα⊥aEα⊥iEbj + IFβ⊥bEaiEβ⊥j

) |HF〉

[f̂ , T̂2′ ]|HF〉 = tαβ
ij

(
IFκαEκiEβj + IFκβEαiEκj

) |HF〉
− tαβ

ij (εi + εj) EαiEβj |HF〉〈
a

i

∣∣∣∣ e−T̂1−T̂2−T̂2′ f̂ eT̂1+T̂2+T̂2′ |HF〉 = tai (εa − εi)



The conventional doubles projection

• Of special interest is the projection of [f̂ , T̂2′ ] onto the
conventional doubles.

• In Ansatz 1, this projection is exactly zero.

• In Ansatz 2, we obtain〈
ab

ij

∣∣∣[f̂ , T̂2′ ]
∣∣∣ HF

〉
= IFaα⊥ tα⊥b

ij + IFbβ⊥ taβ⊥
ij

≈ (
IFap′ rp′mbn + IFbq′ ramq′n

)
cmn
ij

In Ansatz 2, the projection is nonzero but (usually) very small.

• In Ansatz 2, the projection is zero if we assume that IFaα⊥ = 0
(extended Brillouin condition, EBC).

GBC and EBC

• Besides the usual Brillouin condition (IFai = 0), we introduce two
more conditions.

• The generalized Brillouin condition (GBC),

IFα⊥i ≈ 0 (IFαi ≈ 0)

The occupied space is closed under the Fock operator.

• The extended Brillouin condition (EBC),

IFα⊥i ≈ 0 and IFα⊥b ≈ 0

The (finite) orbital space is closed under the Fock operator.

• Assuming canonical orbitals, we may write

IFκi = δκiεi (GBC), IFκp = δκpεp (EBC)



The vector function ΩCC2-R12
aibj

• The CC2 model is an approximation to CCSD. In the doubles
equation, the commutators with ˜̂H are replaced by commutators
with the Fock operator f̂ ,

ΩCC2
aibj =

〈
ab

ij

∣∣∣ ˜̂H + [f̂ , T̂2]
∣∣∣ HF

〉
• For CC2-R12, we find

ΩCC2-R12
aibj = ΩCC2

aibj +

〈
ab

ij

∣∣∣[f̂ , T̂2′ ]
∣∣∣ HF

〉
• In Ansatz 1, ΩCC2-R12

aibj = ΩCC2
aibj . In Ansatz 2,

ΩCC2-R12
aibj ≈ ΩCC2

aibj +
(
IFap′ rp′mbn + IFbq′ ramq′n

)
cmn
ij

Some observations concerning CCSD-R12

• The projection onto the singles is easily computed for both
Ansätze 1 and 2. The main ingredient is the intermediate V ãk

mn.

• All integrals can be evaluated using the standard
approximation (CABS). GBS or EBC are not needed.

• The projection onto the doubles is easily obtained for both
Ansätze 1 and 2 within the CC2-R12 model.

• There is no R12 contribution in Ansatz 1. There is no R12
contribution in Ansatz 2 if the EBC holds.

• The CCSD-R12 projection onto the doubles is easily obtained for
Ansatz 1 but its derivation is a bit tedious for Ansatz 2. The main
ingredient is the intermediate V ãb̃

mn.

• All integrals can be evaluated using the standard
approximation (CABS). GBS and EBC are not needed.



The projection onto the R12 doubles

• The projection onto the R12 doubles is a projection onto the
manifold

rαmβn

〈
αβ

ij

∣∣∣∣
Note that the total number of such projections is n4

occ.

• Let us first consider the CC2-R12 model,

rαmβn

〈
αβ
ij

∣∣∣f̂ + [f̂ , T̂1] + [f̂ , T̂2]
∣∣∣ HF

〉
= rαmβn

〈
αβ
ij

∣∣∣[f̂ , T̂2]
∣∣∣ HF

〉
=

(
IFaα⊥ rα⊥mbn + IFbβ⊥ ramβ⊥n

)
tab
ij

≈ (
IFap′ rp′mbn + IFbq′ ramq′n

)
tab
ij

• In Ansatz 1, the above projection vanishes.

The projection of [f̂ , T̂2′] onto the R12 doubles

• Recall that

[f̂ , T̂2′ ]|HF〉 = tαβ
ij

(
IFκαEκiEβj + IFκβEαiEκj

) |HF〉
− tαβ

ij (εi + εj) EαiEβj |HF〉

• We hence obtain

rαmβn

〈
αβ

ij

∣∣∣[f̂ , T̂2′ ]
∣∣∣ HF

〉
=

{
rγmβn

IFγα + rαmδn
IFδβ − rαmβn (εi + εj)

}
rαkβl c

kl
ij

= 〈mn|f12Q̂12

(
f̂1 + f̂2 − εi − εj

)
Q̂12f12|kl〉ckl

ij

= B(ij)
mnkl c

kl
ij = {Bmnkl − (εi + εj)Xmnkl} ckl

ij



The R12 doubles equation in CC2-R12

• The complete R12 doubles equation in the CC2-R12 model is

rαmβn

〈
αβ

ij

∣∣∣[f̂ , T̂2′ ] + ˜̂Φ
∣∣∣ HF

〉
= B(ij)

mnkl c
kl
ij + Ṽ ij

mn = 0

with
Ṽ ij

mn = rαmβng̃αiβj

• For evaluating Ṽ ij
mn, it is useful to note that

|α〉〈α̃| = |α⊥〉〈α⊥| + |a〉〈ã|

|a〉〈ã| + |k̃〉〈k| = |p〉〈p|

|α〉〈α̃| + |k̃〉〈k| = 1

The intermediate Ṽ ij
mn

• In Ansatz 1, we find

Ṽ ij
mn = rα⊥mβ⊥ng̃α⊥iβ⊥j = V ĩj̃

mn

≈ 〈mn|f12r
−1
12 |̃ij̃〉 − fmvnw gvĩwj̃

− fmv′nw gv′ ĩwj̃ − fmvnw′ gvĩw′ j̃

• In Ansatz 2, we need the following relation:

|α⊥β⊥〉〈α⊥β⊥| + |α⊥b〉〈α⊥b̃| + |aβ⊥〉〈ãβ⊥|
= 1 − |vw〉〈vw| − |α⊥k̃〉〈α⊥k| − |k̃β⊥〉〈kβ⊥|

• This yields for Ansatz 2,

Ṽ ij
mn ≈ 〈mn|f12r

−1
12 |̃ij̃〉 − fmvnw gvĩwj̃

− fmv′nk̃ gv′ ĩkj̃ − fmk̃nw′ gkĩw′ j̃



Summarizing the CC2-R12 model (Ansatz 1)

• The CC2-R12 equations for Ansatz 1 are:

ECC2-R12 = ECC2 + (2cmn
ij − cmn

ji )V ij
mn

0 = ΩCC2-R12
ai = ΩCC2

ai + (2cmn
ik − cmn

ki )V ãk
mn

0 = ΩCC2-R12
aibj = ΩCC2

aibj

0 = ΩCC2-R12
minj = B(ij)

mnkl c
kl
ij + Ṽ ij

mn

• At this point, we note that the range of orbitals φi,φj is restricted
to the set of occupied Hartree–Fock orbitals (canonical or
localized). The orbitals φk,φl,φm,φn, however, may comprise
(seminatural) virtual orbitals as well as occupied orbitals.

• The MP2-R12 model (Ansatz 1) is obtained by omitting the
singles projection and replacing Ṽ ij

mn by V ij
mn.

Summarizing the CC2-R12 model (Ansatz 2)

• Ansatz 2 involves more terms than Ansatz 1,

ECC2-R12 = ECC2 + (2cmn
ij − cmn

ji )V ij
mn

0 = ΩCC2-R12
ai = ΩCC2

ai + (2cmn
ik − cmn

ki )V ãk
mn

− (2cmn
kl − cmn

lk )ramp′n gkĩlp′

+ (2cmn
ik − cmn

ki )ramp′n
IF̃kp′

0 = ΩCC2-R12
aibj = ΩCC2

aibj + Cmnabc
mn
ij

0 = ΩCC2-R12
minj = B(ij)

mnkl c
kl
ij + Ṽ ij

mn + Cmnabt
ab
ij

with
Cmnab = IFap′ rp′mbn + IFbq′ ramq′n

• Again, the MP2-R12 model is obtained by omitting the singles
projection and replacing Ṽ ij

mn by V ij
mn.



CC2-R12 excitation energies

• CC2-R12 excitation energies are obtained from the generalized
eigenvalue problem

Ar = ωSr

where A is the Jacobian, r its right eigenvector, ω the excitation
energy, and S the metric,

S =

 1 0 0
0 1 0

0 0 Smni′j′
klij

 , Smni′j′
klij ri′j′

mn = Xklmn rij
mn

• The Jacobian A contains the first derivatives of the vector
functions, for example,

Amni′j′
klij =

∂ΩCC2-R12
kilj

∂ci′j′
mn

= δii′δjj′B
(ij)
klmn, Amni′j′

klij ri′j′
mn = B(ij)

klmn rij
mn

CC2-R12 performance on excitation energies
• Calculated 1P (2p←2s) excitation energy of Be in eV. A subset of

the 20s17p14d11f8g5h set was used as orbital basis as well as
ABS.

Basis CC2 CC2-R12 CC2-R12+

sp 5.54 5.70 5.30
spd 5.21 5.27 5.13
spdf 5.15 5.17 5.12
spdfg 5.13 5.14 5.11
spdfgh 5.12 5.13 5.11

∞ 5.11

• The CC2-R12+ calculations include one additional set of
seminatural p-type virtuals, providing R12 pair functions of
1P symmetry.



The CCSD-R12 method in DIRCCR12-OS

• The CCSD-R12 method was developed and implemented into
the DIRCCR12 program in 1992–1995.

• An open-shell version (UCCSD based on ROHF or UHF
references) was developed in 2000. The program has since then
be denoted DIRCCR12-OS.

• Triples corrections are available in the CCSD[T]-R12 and
CCSD(T)-R12 models. Note that CCSD[T] is sometimes
denoted CCSD+T(CCSD).

• The DIRCCR12 program uses neither ABS nor CABS. There is
hence no distinction between Ansätze 1 and 2.

• The program is used for benchmark calculations on small
closed- and open-shell systems using large basis sets.

• See http://www-laog.obs.ujf-grenoble.fr/˜valiron/ccr12.

CCSD-R12 performance of ground-state energies

• 2001: CCSD-R12 calculations w/DIRCCR12 on Ne in a
19s14p8d6f4g3h (orbital) basis. Singlet valence-shell
correlation energy: ∆ECCSD-R12

S = −210.61 mEh.

• 2006: Feller et al. developed cc-pVXZ basis sets up to X=10.

Basis Computed Extrapolated (X−3)
cc-pVTZ −170.53
cc-pVQZ −192.73 −208.93
cc-pV5Z −201.63 −210.96
cc-pV6Z −205.47 −210.75
cc-pV7Z −207.46 −210.84
cc-pV8Z −208.56 −210.80
cc-pV9Z −209.17 −210.61
cc-pV10Z −209.56 −210.59
CCSD-R12 −210.61



CCSD-R12 performance of ground-state energies

• 2001: CCSD-R12 calculations w/DIRCCR12 on Ne in a
19s14p8d6f4g3h (orbital) basis. Triplet valence-shell
correlation energy: ∆ECCSD-R12

T = −104.87 mEh.

• 2006: Feller et al. developed cc-pVXZ basis sets up to X=10.

Basis Computed Extrapolated (X−5)
cc-pVTZ − 95.81
cc-pVQZ −101.95 −103.86
cc-pV5Z −103.86 −104.79
cc-pV6Z −104.43 −104.82
cc-pV7Z −104.65 −104.84
cc-pV8Z −104.76 −104.88
cc-pV9Z −104.81 −104.86
cc-pV10Z −104.83 −104.86
CCSD-R12 −104.87

CCSD(T)-R12 calculations on CxHy

• CCSD(T)-R12 calculated atomization energies D0(0K) in
kJ/mol. Basis set: 19s14p8d6f4g3h for C and 9s6p4d3f for H.

Molecule State Calc.a Exptl.b
Methylidyne, CH 2Π 334.48 333.20
Methylene, CH2

3B1 751.85 753.26
Methyl, CH3

2A′′2 1 209.64 1 209.61
Methane, CH4

1A1 1 641.97 1 641.96
Carbon dimer, C2

1Σ+
g 598.42 600.00

Ethynyl, C2H 2Σ+ 1 071.20 1 073.42
Ethyne, C2H2

1Σ+
g 1 624.27 1 626.50

Vinyl, C2H3
2A′ 1 766.81 1769 ± 5

Ethene, C2H4
1Ag 2 225.11 2 225.54

Allene, CH2CCH2
1A1 2 798.71 2 799.3

a From CCSD(T)-R12 calculations including core-correlation effects, anharmonic zero-point vibrational energies,
and scalar-relativistic and spin–orbit effects.
b Computational Chemistry Comparison and Benchmark DataBase, http://srdata.nist.gov.cccbdb/.



CCSD(T)-R12 heats of formation
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Calculated vs experimental enthalpy of formation, ∆H0
f (298.15 K) in

kJ/mol, for HF, H2O, HOF, H2, F2O, OH, and FO (from left to right).

CCSD(T)-R12 geometries
• Analytical gradients are not available in DIRCCR12-OS. The

geometries of the molecules CO, N2, F2, HF, H2O, NH3, CH4,
C2H2, HCN, HNC, CO2, CN, NO, OH, NH2, and CH2 were
computed by calculating the PES.

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

[pm]

CCSD(T)/pVQZ
HF-SCF/456+CCSD(T)/TQ

CCSD(T)/pV5Z
HF-SCF/456+CCSD(T)/Q5

CCSD(T)/pV6Z
HF-SCF/456+CCSD(T)/56

Basis:
19s14p8d6f4g3h2i
for C, N, F, O and
9s6p4d3f2g for H.

56-Extrapolated
results agree to
within 0.01 pm with
the CCSD(T)-R12
geometries.



CCSD(T)-R12 harmonic frequencies

• Harmonic vibrational frequencies have also been computed for
the same molecules. For H2O, for example, we find:

ωe / cm−1 cc-pV5Za cc-pV6Za CCSD(T)-R12b

Symm. stre. ν1 (a1) 3840.1 3837.3 3835.9
Bend ν2 (a1) 1653.4 1651.3 1649.4
Antisymm. stre. ν3 (b2) 3949.3 3947.2 3946.7

a Computed analytically using Aces II. b Computed numerically using DIRCCR12-OS.

• Benchmark calculations of this type are possible but
time-consuming for molecules such as NH3, CH4, CO2, and
C2H2, in the 19s14p8d6f4g3h2i/9s6p4d3f2g basis set.

• The frequencies were obtained using Richardson’s extrapolation.

Recent developments in CCSD-R12 theory

• Development of the CCSD(R12) model.

• Use of an auxiliary basis set (ABS or CABS).

• Implementation of Ansätze 1 and 2.

• Implementation of new correlation factors f12 (= r12.

• Implementation of CC2-R12 and CCSD(R12) response
theory.

• Implementation of MP2-R12 nuclear gradients.

• All recent work took place in the framework of the Dalton
program, for closed-shell coupled-cluster theory
(see http://www.kjemi.uio.no/software/dalton).



The CCSD(R12) model: Theory

• Up to double excitations, the cluster operator is

T̂ = T̂1 + T̂2 + T̂2′

• The CC2 model can be interpreted as an approximation to
CCSD. In the doubles equations, the fluctuation potential is only
transformed with the singles cluster operator T̂1.

• In a similar manner, the CCSD(R12) model is an approximation
to CCSD-R12. In the R12 doubles equations, the similarity
transformation of the fluctuation potential is restricted to the
conventional singles and doubles operators T̂1 and T̂2,

CCSD-R12 : 〈µ2′ |[f̂ , T̂ ] + e−T̂ Φ̂eT |HF〉 = Ωµ2′ = 0

CCSD(R12) : 〈µ2′ |[f̂ , T̂ ] + e−T̂1−T̂2Φ̂eT̂1+T̂2 |HF〉 = Ωµ2′ = 0

The CCSD(R12) model: Further approximations
• In addition to the restricted similarity transformation in the R12

doubles equations, we omit terms in the conventional doubles
equations that are quadratic in T̂2′ ,

1
2 〈µ2|[[ ˜̂H, T̂2′ ], T̂2′ ]|HF〉 ≈ 0

• Concerning triples corrections within the CCSD(T)(R12) model,

〈µ3|[f̂ , T̂3] + [Φ̂, T̂2] + [Φ̂, T̂2′ ]|HF〉 = 0

the contribution from T̂2′ is neglected.

• These further approximations are motivated by the fact that the
contributions are small. In Ansatz 1, the contributions vanish
exactly. In Ansatz 2, they are nonzero but very small.

• Neglecting commutators does not violate the size-extensivity of
the methods.



The CCSD(R12) model: Performance

• Comparison between CCSD-R12 and CCSD(R12) valence-shell
correlation energies of Ne in mEh.

Basis CCSD-R12 CCSD(R12) Difference
DIRCCR12-OS Dalton

aug-cc-pVDZ −320.40 −295.13 25.27
aug-cc-pVTZ −307.84 −301.24 6.60
aug-cc-pVQZ −310.43 −309.32 1.11
aug-cc-pV5Z −313.22 −312.99 0.23
aug-cc-pV6Z −314.49 −314.52 −0.03

• Also for various small molecules, the differences between the
CCSD-R12 and CCSD(R12) energies become negligible in the
aug-cc-pVQZ basis.

• In a very small basis (aug-cc-pVDZ), the CCSD-R12 terms that
are neglected in CCSD(R12) cannot be computed accurately.

Correlation functions other than r12

• The two-electron integrals

rαmβn = 〈αβ|Q̂12f12|mn〉
contain the correlation function f12 = f(r12). In Dalton, various
functions can be chosen.

• The only complication in the theory is that the product f12r
−1
12

and the double commutator 1
2 [f12, [t̂1 + t̂2, f12]] are more involved

with a general f12, because

r12 r−1
12 = 1

1
2 [r12, [t̂1 + t̂2, r12]] = 1

• Since a few years, it has turned out that Slater-type geminals of
the form exp(−ζr12) are very effective in explicitly-correlated
methods.



exp(−r12) expanded in n Gaussians
• Similar to STO-nG basis sets, the Slater-type geminal exp(−r12)

can be expanded in n Gaussians by minimizing

T =

∫ ∞

0

{
e−r12 −

n∑
k=1

ck e−ζkr2
12

}2

e−2r12 r2
12 dr12
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The figure shows the function
r2
12 exp(−2 r12) (solid line) and

the corresponding expansions
with n=3 and n=4 Gaussians
(dashed lines).

Performance of the Slater-type geminals

The figure shows the
valence-shell MP2
correlation energy of
the Ne atom.

Blue : exp(−ζr12)

Red : r12 exp(−ζr12)

× : aug-cc-VDZ
• : aug-cc-VTZ
! : aug-cc-VQZ



Comparison of correlation functions

• The correlation functions exp(−ζr12) and r12 exp(−ζr12) yield
very similar results when the exponents differ by a factor of two.

• The Taylor expansions of both correlation functions have the
same quadratic term when the exponents differ by a factor of
two.

• The following valence-shell MP2 correlation energies (mEh) are
obtained in the aug-cc-pVQZ basis:

Molecule r12 exp(−r12) r12 exp(− 1
2r12) Limit

CH2 −154.3 −155.5 −155.5 −156
H2O −297.1 −299.5 −299.5 −300
NH3 −262.1 −263.9 −263.9 −264
N2 −416.0 −419.5 −419.5 −421
F2 −603.0 −608.7 −608.8 −612

Room for improvement: Basis sets

• Consider calculations on Ne with the correlation factor
r12 exp−ζr12. Scaling of the exponents of the polarization
functions of a cc-pVXZ basis yields improved performance.

• Special basis sets for R12 calculations are needed.

Aug-cc-pVXZ (red), cc-pVXZ (black), and

scaled cc-pVXZ (blue) results for X = 3, 4.

Dependence on exponent and scaling

of the cc-pVQZ results.



Performance of CCSD(T)(R12) w/STG

• CCSD(T)(R12) calculations were performed with an STG
(exponent 1.3) in the aug-cc-pV(T+d)Z basis using Ansatz 2 and
a 21s13p6d4f3g2h(S), 15s9p5d4f3g2h(N,O), 9s5p4d3f2g(H)
CABS. The table reports valence-shell corr. energies in mEh.

• This calculation performs as well as a conventional calculation in
the aug-cc-pV(5+d)Z basis.

• Basis sets (orbital and CABS) have not yet been optimized!

Basis SO3 HNO3

Conv. (R12) Conv. (R12)
aug-cc-pV(T+d)Z −945.27 −1 023.82 −983.93 −1 057.88
aug-cc-pV(Q+d)Z −1 003.78 −1 038.49
aug-cc-pV(5+d)Z −1 024.97 −1 057.58
TQ-Extrapolation −1 046.48 −1 078.30
Q5-Extrapolation −1 047.20 −1 077.61

Outlook: RI-MP2-R12

• The RI approximation of the RI-MP2 method (as implemented
in Turbomole) can also be applied to the MP2-R12 approach.
Highly accurate calculations on larger systems are becoming
possible.

Binding energies of π-stacked
and H-bonded dimers of
2-pyridone and 1,2,4,5-
tetrafluorobenzene, computed
in the aug-cc-pVQZ basis.

Adiabatic electron affinity
of uracil, computed in the
aug-cc-pVQZ basis.



Outlook: To do’s in Turbomole

• RI-MP2-R12 approach with “approximation C”, which avoids the
two-electron integrals over [t̂1 + t̂2, f12].

• RI-MP2-R12 approach with effective core potentials (ECPs),
possibly within a two-component framework to account for
spin–orbit effects.

• RI-MP2-R12 approach with a Slater-type geminal.

• RI-MP2-R12 approach with CABS in the framework of Ansatz 2.

• RI-CC2-R12 and CCSD(R12) ground-state energies (Ansatz 2).

• RI-CC2-R12 and CCSD(R12) excitation energies and response
properties (Ansatz 2).

• Molecular gradients.

An unsolved problem: The B(ij)
mnkl matrix

• The matrix B(ij) is defined as

B(ij)
mnkl =

{
rγmβn

IFγα + rαmδn
IFδβ − rαmβn (εi + εj)

}
rαkβl

• B(ij) is a positive definite matrix. This is most easily seen by
assuming that IFαβ is diagonal with IFαβ = δαβεα. Then,

B(ij)
mnkl = rαmβn (εα + εβ − εi − εj) rαkβl

• It may happen that, due to the approximations in the theory, the
actually computed matrix B(ij) is not positive definite. This may
give rise to numerical instabilities and unphysical excitation
energies and/or response properties.

• We should invoke only those approximations that do not violate
the positive definiteness of the exact matrix B(ij).



The simplest approach to the B(ij)
mnkl matrix

• We rewrite B(ij) as

B(ij)
mnkl =

{
rγmβn

IFγα + rαmδn
IFδβ

}
rαkβl − (εi + εj) Xmnkl

= Bmnkl − (εi + εj) Xmnkl

• The term − (εi + εj) Xmnkl is easy to compute and positive
definite. We hence focus on Bmnkl. For example,

rγmβn
IFγαrαkβl = rγ⊥mβ⊥n

IFγ⊥α⊥rα⊥kβ⊥l + rγ⊥mβ⊥n
IFγ⊥arakβ⊥l

+ rcmβ⊥n
IFcarakβ⊥l + rcmβ⊥n

IFcα⊥rα⊥kβ⊥l

+ rγ⊥mbn
IFγ⊥α⊥rα⊥kbl

• A CABS is required to evaluate the above expression. The
numerical results are poor if we use

Bmnkl ≈ 0 and B(ij)
mnkl ≈ − (εi + εj)Xmnkl

The commutator integrals

• We write B(ij)
mnkl in first quantization,

B(ij)
mnkl = 〈mn|f12Q̂12

(
f̂1 + f̂2 − εi − εj

)
Q̂12f12|kl〉

Assuming the GBC, we may write

B(ij)
mnkl ≈ 1

2 〈mn|f12Q̂12[f̂1 + f̂2, Q̂12f12]|kl〉
+ 1

2 〈mn|[f12Q̂12, f̂1 + f̂2]Q̂12f12|kl〉
+ 1

2 (εk + εl + εm + εn − 2εi − 2εj) Xmnkl

• This reformulation leads to the commutator [f12Q̂12, f̂1 + f̂2] and
thus to [f12, f̂1]. Since only the kinetic energy and the exchange
operator do not commute with f12, we obtain

[f12, f̂1] = [f12, t̂1]− [f12, k̂1]



Standard approximations A, B, C, . . .

• Considering [f12, f̂1] = [f12, t̂1]− [f12, k̂1], one can assume that
the contributions from the commutator [f12, k̂1] are small and
negligible.

• The integrals over [f12, t̂1] can be computed analytically while
the integrals over [f12, k̂1] require completeness insertions in
terms of the (C)ABS.

• The complete neglect of [f12, k̂1] is denoted as “approximation
A”. The first implementation of the MP2-R12 method (in 1987)
was based on this approximation.

• Approximation A is only used in MP2-R12 theory. The
MP2-R12/A model tends to overestimate (slightly) the magnitude
of the MP2 correlation energy.

• The integrals over [f12, k̂1] are considered in the MP2-R12/B
model. Approximation B is usually used beyond MP2.


