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The closed-shell CCSD-R12 Ansatz

CCSD-R12 theory has been implemented in a spin-free
closed-shell fashion as well as in a spin-orbital formalism.

Here, we focus on the closed-shell CCSD-R12 method,
where the cluster operator 7' is written as

"

T = Tv+T+ T

Tl = t?Eai
T, = t2E,Ey
Fy = 43 BaiEiy = oo Eoi

Summation over repeated indices is assumed (Einstein
summation convention).

The indices « and (3 refer to a complete basis of virtuals.
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Correlation functions

The two-electron integrals

Tampn = (@3|Q12 f12|mn)

contain the projection operator Q1» and the correlation
function f1», which is a function of the interelectronic
distance r1». Examples are:

(ri2) = r2

(r12) = exp(—y712)
fi2 = f(r2) = crexp(—7kris)

(712)

= CgT12 eXp(—%T%z)

The form of the correlation function f1> will only become
important later.
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Ansatze 1 and 2

The projection operator (1, can be chosen in two
manners, which are referred to as Ansatz 1 and Ansatz 2,

lez) =(1-P)1-P) Ansatz 1
C/?12 —
0D =(1-0)1-0,)- Vil  Ansatz2

The projectors are:

P

|op)(¢p| is the projector onto the whole finite space
V = |¢a)(0da| is the projector onto the virtual space

O = |¢:)(¢;] is the projector onto the occupied space
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Ansatze 1 and 2 (continued)

e Within the complete basis { ¢4 }n,.+1...00 Of virtual orbitals, there
are virtual orbitals {¢4 }n...+1...n,,, iNside the finite basis and
virtual orbitals {¢q 1 }n,,.+1...c0 OUtside the finite basis,

{¢a} ={da} U{dar}

(”Zlaﬁ = > latph

OLJ-,BJ-
<2>Z|a@ = D latph) Y last) + ) lath)
alpL afBt albd

Double excitations with one or two virtuals outside the finite
space are generated in Ansatz 2, whereas Ansatz 1 is restricted
to excitations with both virtuals in the orthogonal complement.
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The CCSD-R12 energy
e The CCSD-R12 energy can be written as
Eccspriz = FEur+ 5 (HF\[[H Tl] T1]+[H T2]+[H T2/]|HF>

= Focsp + AERi2
e QOur task is to evaluate the R12 contribution

AFriy = 3¢9 rompn (HF|[H, Eoi Egj]|HF)

2tmn

with the Hamiltonian
I:\I - hnuc + hl’i)\EK)\ + %g/—;/\,uv SPEONTY,

The Greek letters k, A, 11, v denote a complete basis.

e (HF|[A, E.;E3,]HF) must be evaluated
in the complete Fock space.
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The CCSD-R12 energy

e We know from standard CCSD theory that
(HF|[H, Eui Eyj]HF) = 2Li0jb = 4Giajp — 20ibja
Hence, the R12 contribution is
AFEg, = c%mramgnl)mjg

o If we define the amplitudes tf‘jﬂ = cnn

1) Tamﬂna

we can write the CCSD-R12 energy as

Eccspriz = Ewr + (t%b + t?t?)Liajb + t?jﬂLz‘ajﬁ
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The CCSD-R12 singles projection
e In terms of the T1-transformed Hamiltonian i , we find
Qi = <a A+ [0,y + Ty HF> = QEOSD | Rtz
1
QRi2 — <C,‘ (A, To] HF>
1
Term CCSD part Corresponding R12 contribution
le ug}gadkc quga(skzv = (207;3” - C;Zn) Tymén Jasky
QCB;Z _u]aglcgkilc _Uzzgkilq/ = _(202;” - C?;;m) Tamyn gkil’y
Qi U, Fe Uy, ' by = (245" — ") Taman '3 Ky
Qo Foi 0
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Recipe for deriving the CCSD-R12 equations

e Using a complete Fock space, the CCSD-R12 equations
are easily derived by a correspondence principle. Virtual
indices ab in doubles amplitudes t?f in the conventional
formulation must be replaced by those of the complete
basis af.

e Amplitudes ti‘f , t?f ., and to‘b must be identified with

cmn
Zj TampBns C 2] 7aamﬁna andc Tambn-

e In Ansatz 1, all integrals 74,5, are zero except r,1,,31,-

(T
Matrix elements Vor
e In the following, we shall use a compact notation for
products of the two-electron integrals r,,3, and g,qss,
TapBqdrasp — ‘/pzs
e Hence,
AEYR12 — zg 7"ozmﬁn(zgzozjﬁ gzﬁja) (2Cmn - Cmn)vijn
ngmz = (2" — ciy )T7m5n Yadky — (2ci" — cig )Va/r{z

= (2" - Ckzn)VaIfL
e In first quantization,
Ve = (pq| f12Q12715 |r)
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Complementary auxiliary basis set (CABS)

o The Q272 and Q"2 terms of the singles vector function
cannot be expressed in terms of the V' intermediate.

e Two-electron integrals with one index in the
complementary virtual space are approximated by
inserting an orthonormal, finite complementary auxiliary
basis set (CABS),

{¢p/}1~-~ncabs’ <¢p|¢q’> =0, <¢p’|¢q’> - 5p’q’

e For example,

0 in Ansatz 1
QB1‘—R12 —

—(2CZZLn — Clnkl:n)Tamp/n gkzlp’ in Ansatz 2
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The C1 term of the singles vector function

e Using the CABS, the C1 term of the singles vector function
becomes

0 in Ansatz 1
QC1_-R12 —

(2CZZTL - C%n)ramp/nlpkp/ in Ansatz 2

e The matrix 'F is the standard inactive Fock matrix
calculated from the T1-transformed one- and two-electron
integrals,

I 7 _
Fry = iy + 2055 = G

- Ika’ + (2gkp’ic - gk:cip’)tzq
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Three-electron integrals

Thus far, we have introduced only one approximation, and
only in the framework of Ansatz 2.

This approximation concerns Q2.2 and Q2172

For example, the exact evaluation of Q2!*'2 requires the

al

computation of three-electron integrals,

Tamyn Gy Tam~y+n 9xi1y+
= (mni|fraryg'|alk) — (mn| frzlap) (pi|ri; 1K)
- (mni|f12r2_31|alk> - fampn gk:%lp
The key to the success of the R12 methods is the
introduction of an approximation that avoids the evaluation
of three-electron integrals.
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The standard approximation (SA)

In R12 theory, the three-electron integrals are computed by
inserting a resolution-of-the-identity (RI) approximation, that is

1~ |p")(p"|
where {p"'}1 ... is an orthonormal auxiliary basis set (ABS).

Here and in the following, we choose this ABS as the union of
the finite basis and the CABS,

{¢p”}1...nabs - {¢p}1...nbas U {¢p’}1...ncabs

Inserting the RI approximation into the three-electron integrals
leads to

<mnaf127’2_31 lalk) = fomprn i
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Standard approximation for V7

e The projection operators

0 { lez) = (1-P)(1 - P) Ansatz 1
12 —
OB =1-0)1-0,) -t Ansatz 2

lead to three-electron integrals, which are computed using the
standard approximation,

(1—?1)(1—?2) ~ ]_—ﬁlpz—plﬁé—Pl/pg
(1—01)(1—02)—‘71‘72 ~ 1_]31]52—011%’—]51’02

o Clearly, there is no difference between Q1Y) and Q{2 when
CABS is not used.
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Standard approximation for V7>

o SA for Vod in Ansatz 1:

<pq|f12(1 — plpz — plpé — pllpg)’l“l_21|7“8>
= (pglfraryy Irs)

Q

(pq| f12Q85 5t rs)

fpvqw Gurws — fpv’qw Gv'rws — fpfqu’ Gurw's

o SA for Vo in Ansatz 2:

(pq| f120 D1t rs) ~  (pg|fra(l — PLPy — Oy By — PLOY)r st rs)
= (pq|frors|rs)

fpvqw Gurws — fpv’qi Guv'ris — fpiqw’ Girw's
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Standard approximation for r1,Q'3) 7!

e For He in the cc-pVTZ basis, the three-electron integral
(11]r120P 771 11) can be evaluated analytically.

e |t amounts to (11|r12Q12 ri5|11) = —0.147 806 6 a.u.

e Using an ABS, this integral is computed as follows:

ABS (11|r1,Q3r 5 11)
4s (uncontracted cc-pVDZ) —0.1484274
6s (uncontracted cc-pVTZ) —0.147 8583
7s (uncontracted cc-pVQZ) —0.14778938
8s (uncontracted cc-pV52) —0.1477697
10s (uncontracted cc-pV6Z2) —0.1477519

Error

—0.42%
—0.035%
0.011%
0.025%
0.037%
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SA W/CABS for r1,00)r )}

e For He in the cc-pVTZ basis, the three-electron integral
<11]7~12Q12 r15 |11) can be evaluated analytically.

e |t amounts to (11|r12Q12 ri;|11) = —0.147 806 6 a.u.

e Using a CABS, this integral is computed as follows:

CABS (11}rpQY)r 1)
4s (uncontracted cc-pVDZ) —0.147 8289
6s (uncontracted cc-pVTZ) —0.147 8583
7s (uncontracted cc-pVQZ) —0.1478124
8s (uncontracted cc-pV52) —0.147 8086
10s (uncontracted cc-pV6Z) —0.1478086

Error

0.015%
0.035%
0.004%
0.001%
0.001%
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Standard approximation for an@rlg

e For He in the cc-pVTZ basis, the three-electron integral
<11\r1262§22)r12|11> can be evaluated analytically.

o It amounts to (11|r12Q{2r15]11) = 0.1507509 a.u.

e Using an ABS, this integral is computed as follows:

ABS (11|r;,Q@)r5H11)  Error
4s (uncontracted cc-pVDZ) 0.1996702 32%
6s (uncontracted cc-pVTZ) 0.1543845 2.4%
7s (uncontracted cc-pVQZ) 0.1513579 0.40%
8s (uncontracted cc-pV52) 0.1509746 0.15%

10s (uncontracted cc-pV6Z2) 0.1516061 0.57%

AIT

SA W/CABS for 11,01,

e For He in the cc-pVTZ basis, the three-electron integral
<11]r1262§22)fr12|11> can be evaluated analytically.

o Itamounts to (11]r1,Q'2r15|11) = 0.1507509 a.u.

e Using a CABS, this integral is computed as follows:

CABS (11|r1,03 |11 Error
4s (uncontracted cc-pVDZ) 0.1508721 0.080%
6s (uncontracted cc-pVTZ) 0.1543845 2.4%
7s (uncontracted cc-pVQZ) 0.1507711 0.013%
8s (uncontracted cc-pV52) 0.1507669 0.011%

10s (uncontracted cc-pV6Z) 0.1507604 0.006%
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The vector function €2,

To illustrate the derivation of the CCSD-R12 equations, we focus
in the following on Ansatz 1.

The equations for Ansatz 2 are left as an excercise.

All of the equations can be derived from the standard CCSD
equations,
Qaivj = Qé\izbj + Qsz'zbj + Pi(;'b (Qgizbj + Qc?izbj + QS?bj)
with
ab qab __ jab ba
PAY = Ay + A

The R12 contributions to the conventional €,;;,; vector function
are obtained by virtue of the correspondence principle. Doubles
amplitudes ¢¢? in the conventional formulation must be replaced
by those of the complete basis af.
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The conventional vector function €2,

Q0% = Gaivg + £ Jacka

QSizbj = % (Grarj + tfjdﬁkcld)

Qgizbj = _%t% (Griae — 38 Gkare) — 155 (Grjac — %tﬁdgkdlc)
Qc?izbj = %U?% (Laike + 208 Lige)

Q5% =t ('Foe — wiliane) — t5f (Frj + uilraic)

The intermediates L and « are defined as before,
Lypgrs = 29pqrs — Gpsrqs ulqu — 2t’?jb - t%)

In Ansatz 1, the R12 contributions to the conventional vector
function Q,,;,; are obtained from the terms with ¢°? or u°,
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R12 contributions to Q,;; iIn Ansatz 1

A2-R12 75 - _ .mn ab

aibj - t ga'ybé C Tm’yn(sga’yb(s C V

B2-R12 0~ ~ ab k:l
aibj tv Ghts = 13 Cij TmandJkyls = L Cij Vi
E2-R12  __ ab 6 0\ ~

aibj = “lik <2tlj —tj ) Jksly

ab mn mn ~
= —ti (2% —Cj )7" mynd 9kdly
_ ab mn mn kl ab mn mn kl
= —t{ (2¢]" — ) Vi = =t (27" = ¢5™) Vinn

e Before we proceed, we shall investigate the CC2-R12 model.

e Moreover, it is worthwile to rewrite the above equations explicitly
for a two-electron system, where ¢} V1! is the R12 contribution

to the energy.
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CID-R12 eigenvalue equation for two electrons

e The explicitly-correlated configuration-interaction-with-doubles
(CID-R12) eigenvalue equation for a two-electron system can be
written in matrix form as follows:

0 V g! 1 1
Vv HR12 — EHF VT C = AF C
g V He®wW — EHF t t

e Thus, the conventional doubles equation reads

g + Ve + (Hconv — EHF)t —AFt=0

e The R12 contributions to this equation are

R12 A2-R12 B2-R12 E2-R12 __ 11 ab ].1
VC— AE t = Q albl +Q albl +2Qa1b1 = V tll 11V
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T1 transformation of the Fock operator

* The idea of the CC2 model is to partition the Hamiltionian in the
Moller—Plesset manner into the Fock operator f and the
fluctuation potential ® = H — F — hpyc.

e Hence, we need to investigate the T1 transformations of f and ¢
separately.

e Concerning f we find

f=exp(~T1)fexp(T1) = f + [f, 1]
[f: Tl] — t? IFn/\[Eh)m Eai] - t;l (lF/-@aEml - lFi/\Ea)\)

e Assuming canonical orbitals, working onto the Hartree—Fock
state yields

[/, TA][HF) = t{ (e — i) Buil HF) + t{ 'Fy 1 g Eq 15| HF)
AIT

The similarity-transformed Fock operator

¢ |nthe CCSD-R12 model, the similarity-transformed Fock
operator is

e Tty ettt = f (f ]+ [, Do) + [, T2
e The commutators with 75 and 7% give rise to
[/, D)HF) = t%(ca + &y — &; — €;) Eai Ep;|HF)
+ 3 (ForaBuriEy; + 'FaiyFeiEgu ;) [HF)
[/, T2)HF) = 37 (FraEwiEs; + 'FapPBoaiBy;) [HF)
— t%ﬁ (61' —|—€j)EaiE5j’HF>

S|

e—Tl—Tz—Tz/ f€T1+T2+T2/ ‘HF> — t?(

Ea — Ei)
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The conventional doubles projection

Of special interest is the projection of | 1, T>] onto the
conventional doubles.

In Ansatz 1, this projection is exactly zero.

In Ansatz 2, we obtain

ab [ s A
<Z] ‘[f?TT]

HF> = Faa, t550 + 'Fyg, 177

~ (IFap’ T'p'mbn + Iqu’ Tamq’n) C;;'Ln
In Ansatz 2, the projection is nonzero but (usually) very small.

In Ansatz 2, the projection is zero if we assume that 'F,,,, =0
(extended Brillouin condition, EBC).
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GBC and EBC

Besides the usual Brillouin condition ('F,,; = 0), we introduce two
more conditions.

The generalized Brillouin condition (GBC),
Foi~0 ('F.=~0)
The occupied space is closed under the Fock operator.
The extended Brillouin condition (EBC),
'F,,i~0 and Foip~0
The (finite) orbital space is closed under the Fock operator.
Assuming canonical orbitals, we may write

IFmL = dnigi  (GBC), IF/@p = 5i<cp€p (EBC)
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The vector function ngg;“

e The CC2 model is an approximation to CCSD. In the doubles

equation, the commutators with H are replaced by commutators
with the Fock operator f,

Qcc2 _ <ab

ﬁf+[f,fz](HF>

e For CC2-R12, we find

_ ab |
A R O G

g

CC2-R12 _ (OCC2
e In Ansatz 1, Q;75%% = Q77 In Ansatz 2,

CC2-R12 . HCC2 I I mn
Qaibj ~ Qaibj + (Fap’ Tp'mbn + Fog TamQ’n) Cij
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Some observations concerning CCSD-R12

e The projection onto the singles is easily computed for both
Ansatze 1 and 2. The main ingredient is the intermediate V2~ .

e All integrals can be evaluated using the standard
approximation (CABS). GBS or EBC are not needed.
e The projection onto the doubles is easily obtained for both
Ansatze 1 and 2 within the CC2-R12 model.
e There is no R12 contribution in Ansatz 1. There is no R12
contribution in Ansatz 2 if the EBC holds.

e The CCSD-R12 projection onto the doubles is easily obtained for
Ansatz 1 but its derivation is a bit tedious for Ansatz 2. The main
ingredient is the intermediate 1/ .

e All integrals can be evaluated using the standard
approximation (CABS). GBS and EBC are not needed.
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The projection onto the R12 doubles

e The projection onto the R12 doubles is a projection onto the

manifold _
af

Tozm n ..

B i

Note that the total number of such projections is n?

occ-

e Let us first consider the CC2-R12 model,

Tampn <(ZB ‘f—l_ [f) fl] + [fa fQ]‘ HF> = Tampn <(ZB ‘[fa T2]‘ HF>
- (IFaaL Ta | mbn + IFb,BL ramﬁLn) t?jb

~ (1 | b
~ (Fap’ Tp'mbn + Fog Tamq%) t5;

e In Ansaiz 1, the above projection vanishes.

AIT

The projection of [f, 7»] onto the R12 doubles

e Recall that

[_]?, T2/1|HF> = t%ﬁ (IFK,O(EKiEBj + IFfeﬁEaiE/-cj) ‘HF>
— t%ﬂ (Si +€j)EaiE,8j‘HF>

aB | .
amfBn .. 7T’ HF
Tamg < i ‘[f o] >
- {’r'ymBnIF'ya + Tam(San(Sﬁ — TampBn (51' + 5j)} Takpgl cfjl
= (mn|f12Q12 (fl + fz — & — Ej) leflz\kwcff
= B(U) Ckl = {ankl - (5i + €j)ankl} C’]Lcjl

mnkl ~tj

e \We hence obtain
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The R12 doubles equation in CC2-R12

e The complete R12 doubles equation in the CC2-R12 model is

alB .~ x
Tam,6”< wﬂ ‘[faTz']ﬂL‘D

HF> =B Ky Vi =0

mnkl ~1J
with
Vit = TampBnJais;

e For evaluating V¥ | it is useful to note that

mn’

)@l = la){ai]+]a)@l
)@l + k) (k| = Ip){p
) (@] + k) (k| = 1
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The intermediate V.

e |n Ansatz 1, we find

Vrfzjn = ToumﬁLngOuiﬁlj = Vnzzjn
—1%
~ (mn|f127“12 |Zj> - fmvnw gv%w}

fmv’nw gvlzwj - fmvnw’ gv;w/‘;
e In Ansatz 2, we need the following relation:

lay B ar Br] + |arb){arb] + |aBL) (@3
=1 — Jow)(ow| — |ark)(ark] — [kBL)(kBL|

e This yields for Ansatz 2,

Vnzmjn ~ (mn|f127“1_21 |€5> = Jfmonw Iviwj

fmv’nl:: 9vik; — fml::nw’ Ikiw';
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Summarizing the CC2-R12 model (Ansatz 1)

e The CC2-R12 equations for Ansatz 1 are:

Eccoriz = Ecce t+ (202-?" - C;;Ln)qu?n
0 = Qg Qe (2 — Vi
0 = o - o
o = Y = B+ T

e At this point, we note that the range of orbitals ¢;, ¢; is restricted
to the set of occupied Hartree—Fock orbitals (canonical or
localized). The orbitals ¢y, ¢, ¢, ¢, hOwever, may comprise
(seminatural) virtual orbitals as well as occupied orbitals.

e The MP2-R12 model (Ansatz 1) is obtained by omitting the
singles projection and replacing V% by V¥ .
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Summarizing the CC2-R12 model (Ansatz 2)

e Ansatz 2 involves more terms than Ansaiz 1,

o
Eccoriz =  FEece + (2¢73" — ")Vl

_ CC2-R12 _ (CC2 mn mn ak

0 = Qg = Q"+ (2¢i" — " W,

mn mn
— (2" — )Tamp’ngkz%zp/

mn mn 17
+ (2e" = ki Irampn Frpr

_ CC2-R12 _ ©CC2 mn
0 = Qi ~ = Qi+ CmnavC;
_ cce-R12 __ p(ij) ki | trij ab
with
| |
Cmnab — Fap’ T'p'mbn + qu’ Tamg'n

* Again, the MP2-R12 model is obtained by omitting the singles
projection and replacing V% by V% .
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CC2-R12 excitation energies

e CC2-R12 excitation energies are obtained from the generalized
eigenvalue problem
Ar = wSr

where A is the Jacobian, r its right eigenvector, w the excitation
energy, and S the metric,

10 0
s=101 0 | S i = Xktmn T
0 0 Sy’

e The Jacobian A contains the first derivatives of the vector
functions, for example,

8 CC2-R12
mni'j’ kilj

.. i i . . ..

.. _— Y] /B(IL]) Amnz J TZ ] = B(Z]) TZ]

klij 7
acmjn

I klmn> klij mn klmn " mn
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CC2-R12 performance on excitation energies

e Calculated 'P (2p«—2s) excitation energy of Be in eV. A subset of
the 20s17p14d11f8g5h set was used as orbital basis as well as
ABS.

Basis CC2 C(CC2-R12 (CC2-R12+

sp 5.54 5.70 5.30
spd 5.21 5.27 5.13
spdf 5.15 517 512
spdfg  5.13 5.14 5.11
spdfgh  5.12 5.13 5.11
00 5.11

e The CC2-R12+ calculations include one additional set of
seminatural p-type virtuals, providing R12 pair functions of
1P symmetry.

AT




The CCSD-R12 method in DIRCCR12-0S8

e The CCSD-R12 method was developed and implemented into
the DIRCCR12 program in 1992—1995.

e An open-shell version (UCCSD based on ROHF or UHF
references) was developed in 2000. The program has since then
be denoted DIRCCR12-0S.

e Triples corrections are available in the CCSD[T]-R12 and
CCSD(T)-R12 models. Note that CCSD[T] is sometimes
denoted CCSD+T(CCSD).

e The DIRCCR12 program uses neither ABS nor CABS. There is
hence no distinction between Anséatze 1 and 2.

e The program is used for benchmark calculations on small
closed- and open-shell systems using large basis sets.

e See http://www-laog.obs.ujf-grenoble.fr/~valiron/ccri2.
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CCSD-R12 performance of ground-state energies

e 2001: CCSD-R12 calculations w/DIRCCR12 on Ne in a
19s14p8d6f4g3h (orbital) basis. Singlet valence-shell
correlation energy: AESSPR12 = —210.61 mE,.

e 2006: Feller et al. developed cc-pVXZ basis sets up to X=10.

Basis Computed Extrapolated (X—3)
cc-pVTZ —170.53

cc-pvVQZ —192.73 —208.93
cc-pVsZ —201.63 —210.96
cc-pVeZ —205.47 —210.75
cc-pV7Z —207.46 —210.84
cc-pV8Z —208.56 —210.80
cc-pVvVaZ —209.17 —210.61
cc-pV10Z —209.56 —210.59

CCSD-R12  —-210.61
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CCSD-R12 performance of ground-state energies

e 2001: CCSD-R12 calculations w/DIRCCR12 on Ne in a
19s14p8d6f4g3h (orbital) basis. Triplet valence-shell
correlation energy: AESCSPR12 — _104.87 mE),.

e 2006: Feller et al. developed cc-pVXZ basis sets up to X=10.

Basis Computed Extrapolated (X—°)
cc-pVTZ —095.81

cc-pvVQZ —101.95 —103.86
cc-pVsZ —103.86 —104.79
cc-pVeZ —104.43 —104.82
cc-pV7Z —104.65 —104.84
cc-pV8Z —104.76 —104.88
cc-pVaZ —104.81 —104.86
cc-pV10Z —104.83 —104.86

CCSD-R12  —104.87

AIT

CCSD(T)-R12 calculations on C,H,

e CCSD(T)-R12 calculated atomization energies Dy(0K) in
kd/mol. Basis set: 19s14p8d6f4g3h for C and 9s6p4d3f for H.

Molecule State Calc.@ Exptl.’
Methylidyne, CH 2 334.48 333.20
Methylene, CH, 3B, 751.85 753.26
Methyl, CH3 2A’2’ 1209.64 1209.61
Methane, CH, 14, 1641.97 1641.96
Carbon dimer, C, ol 598.42 600.00
Ethynyl, C,H 25+ 1071.20 1073.42
Ethyne, C;H, Yl 1624.27 1626.50
Vinyl, CoHs 24 1766.81 1769 +5
Ethene, CoH, 1Ag 2225.11 2225.54
Allene, CH,CCH, 14, 2798.71 2799.3

@ From CCSD(T)-R12 calculations including core-correlation effects, anharmonic zero-point vibrational energies,
and scalar-relativistic and spin—orbit effects.

b Computational Chemistry Comparison and Benchmark DataBase, http://srdata.nist.gov.cccbdb/.
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CCSD(T)-R12 heats of formation

200

100

-100

-200

/%,,

300 L
-300 -200 -100 0 100 200

Calculated vs experimental enthalpy of formation, AH]? (298.15 K) in
kd/mol, for HF, H,O, HOF, H,, F,O, OH, and FO (from left to right).
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CCSD(T)-R12 geometries
e Analytical gradients are not available in DIRCCR12-0sS. The
geometries of the molecules CO, N,, F,, HF, H,O, NH3, CHy,,
C2H2, HCN, HNC, COQ, CN, NO, OH, NHQ, and CH2 were
computed by calculating the PES.
T — Basis:
HF'SCFMSGE%ECESE%TE@E 19s14p8d6f4g3h2i
HF-SCF/456+CCSD(T)/56 === fOI’ C, N, F, O an d
9s6p4d3f2g for H.

56-Extrapolated
results agree to
within 0.01 pm with
the CCSD(T)-R12
geometries.

-0.3 -0.2

[pm]
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CCSD(T)-R12 harmonic frequencies

e Harmonic vibrational frequencies have also been computed for
the same molecules. For H,O, for example, we find:

w, / cm~1 cc-pV5Z¢  cc-pVeZ* CCSD(T)-R12°
Symm. stre. 11 (a1) 3840.1 3837.3 3835.9
Bend v, (a1) 1653.4 1651.3 1649.4
Antisymm. stre. 3 (by) 3949.3 3947.2 3946.7

@ Gomputed analytically using Aces II. ? Computed numerically using DIRCCR12-0S.
p y y ¢} p y ¢}

e Benchmark calculations of this type are possible but
time-consuming for molecules such as NH3, CH,4, CO,, and
C,H,, in the 19s14p8d6f4g3h2i/9s6p4d3f2g basis set.

e The frequencies were obtained using Richardson’s extrapolation.

AIT

Recent developments in CCSD-R12 theory

e Development of the CCSD(R12) model.

e Use of an auxiliary basis set (ABS or CABS).

e Implementation of Ansatze 1 and 2.

e Implementation of new correlation factors fi> # ri2.

e Implementation of CC2-R12 and CCSD(R12) response
theory.

e Implementation of MP2-R12 nuclear gradients.

e All recent work took place in the framework of the Dalton
program, for closed-shell coupled-cluster theory
(see http://www.kjemi.uio.no/software/dalton).
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The CCSD(R12) model: Theory

e Up to double excitations, the cluster operator is
T = Tl + TQ + Tg/

e The CC2 model can be interpreted as an approximation to
CGCSD. In the doubles equations, the fluctuation potential is only
transformed with the singles cluster operator 73.

¢ In a similar manner, the CCSD(R12) model is an approximation
to CCSD-R12. In the R12 doubles equations, the similarity
transformation of the fluctuation potential is restricted to the
conventional singles and doubles operators 77 and 15,
CCSD-R12 : (up|[f, 7]+ e TdeTHF) =Q,,, =0
CCSD(R12) : (ux|[f,T]+ e T 2delH 2 |HF) = Q,,, = 0

AIT

The CCSD(R12) model: Further approximations

e |n addition to the restricted similarity transformation in the R12
doubles equations, we omit terms in the conventional doubles
equations that are quadratic in 73,

Luo|[[A, Tor], To]HF) =~ 0

e Concerning triples corrections within the CCSD(T)(R12) model,
(s, Ts] + [, T5] + [®, To ] HF) = 0
the contribution from 7% is neglected.

e These further approximations are motivated by the fact that the
contributions are small. In Ansatz 1, the contributions vanish
exactly. In Ansatz 2, they are nonzero but very small.

e Neglecting commutators does not violate the size-extensivity of

the methods.
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The CCSD(R12) model: Performance

e Comparison between CCSD-R12 and CCSD(R12) valence-shell
correlation energies of Ne in mEj,.

Basis CCSD-R12 CCSD(R12) Difference
DIRCCR12-0S Dalton

aug-cc-pVDZ —320.40 —295.13 25.27

aug-cc-pVTZ —307.84 —301.24 6.60

aug-cc-pvQZ —310.43 —309.32 1.11

aug-cc-pVsZ —313.22 —312.99 0.23

aug-cc-pVeZ —314.49 —314.52 —0.03

¢ Also for various small molecules, the differences between the
CCSD-R12 and CCSD(R12) energies become negligible in the
aug-cc-pVQZ basis.

e In a very small basis (aug-cc-pVDZ), the CCSD-R12 terms that
are neglected in CCSD(R12) cannot be computed accurately.
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Correlation functions other than 5
e The two-electron integrals

TamBn = <aﬁ|Q12f12\mn>

contain the correlation function fi1, = f(r12). In Dalton, various
functions can be chosen.

e The only complication in the theory is that the product f1o775"
and the double commutator 3[f12, [f1 + £2, f12]] are more involved
with a general f1,, because

12 7“1_21 = 1
ro i+ b,re]] = 1

e Since a few years, it has turned out that Slater-type geminals of
the form exp(—(r12) are very effective in explicitly-correlated
methods.
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exp(—712) expanded in n Gaussians

e Similar to STO-nG basis sets, the Slater-type geminal exp(—r12)

can be expanded in n Gaussians by minimizing

oo n 2
J— p— 2 J—
T:/ e "2 — g cpe ST Y T2 r2, drio
0 k=1

TN The figure shows the function
N / N\ r2, exp(—2r12) (solid line) and
\\ the corresponding expansions
/ with n=3 and n=4 Gaussians
, (dashed lines).
0.0: / ) \
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Correlation energy (millihartree)
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310 |
315 fy |
-320

-325

Performance of the Slater-type geminals

o ' The figure shows the
260 R / 1 valence-shell MP2
285 X" correlation energy of
290 5

290 £ / the Ne atom.
-300 h x"‘xx ’Z
305 | \\x«:}j"/ / . Blue

exp(—(ri2)
Red : 15 exp(—(ri2)

X

PR e xRS

X : aug-cc-VDZ

0 0.5 1 15 2 25 e : aug-cc-VTZ
Exponent of correlation factor o - aUg'CC'VQZ
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Comparison of correlation functions

e The correlation functions exp(—(ri2) and r exp(—(ri2) Yyield
very similar results when the exponents differ by a factor of two.

e The Taylor expansions of both correlation functions have the
same quadratic term when the exponents differ by a factor of
two.

e The following valence-shell MP2 correlation energies (mE},) are
obtained in the aug-cc-pVQZ basis:

Molecule 712 eXp(—le) 712 exp(—%rlg) Limit

CH, —154.3 —155.5 —155.5 —156
H,O —297.1 —299.5 —299.5 —300
NH3 —262.1 —263.9 —263.9 —264
N> —416.0 —419.5 —419.5 —421
F> —603.0 —608.7 —608.8 —612

AIT

Room for improvement: Basis sets

e Consider calculations on Ne with the correlation factor
rip exp —(r1p. Scaling of the exponents of the polarization
functions of a cc-pVXZ basis yields improved performance.

e Special basis sets for R12 calculations are needed.

-300

D
)

0.2 0.4 06 08 1 1.2 14
Exponent of correlation factor

Aug-cc-pVXZ (red), cc-pVXZ (black), and Dependence on exponent and scaling

scaled cc-pVXZ (blue) results for X = 3, 4. of the cc-pVQZ results.
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Performance of CCSD(T)(R12) w/STG

e CCSD(T)(R12) calculations were performed with an STG
(exponent 1.3) in the aug-cc-pV(T+d)Z basis using Ansatz 2 and
a 21s13p6d4f3g2h(S), 15s9p5d4f3g2h(N,O), 9s5p4d3f2g(H)
CABS. The table reports valence-shell corr. energies in mEi,.

e This calculation performs as well as a conventional calculation in
the aug-cc-pV(5+d)Z basis.

e Basis sets (orbital and CABS) have not yet been optimized!

Basis SO; HNO;

Conv. (R12) Conv. (R12)
aug-cc-pV(T+d)Z  —94527 —1023.82  —983.93 —1057.88
aug-cc-pV(Q+d)Z —1003.78 —1038.49
aug-cc-pV(5+d)Z —1024.97 —1057.58
TQ-Extrapolation —1046.48 —1078.30
Q5-Extrapolation  —1047.20 —1077.61

AIT

Outlook: RI-MP2-R12

e The Rl approximation of the RI-MP2 method (as implemented
in Turbomole) can also be applied to the MP2-R12 approach.
Highly accurate calculations on larger systems are becoming
possible.

Binding energies of n-stacked

and H-bonded dimers of

2-pyridone and 1,2,4,5- n
tetrafluorobenzene, computed

in the aug-cc-pVQZ basis.

Adiabatic electron affinity e
of uracil, computed in the
aug-cc-pVQZ basis. . .

AT




Outlook: To do’s in Turbomole
RI-MP2-R12 approach with “approximation C”, which avoids the
two-electron integrals over [{; + to, f12].

RI-MP2-R12 approach with effective core potentials (ECPs),
possibly within a two-component framework to account for
spin—orbit effects.

RI-MP2-R12 approach with a Slater-type geminal.
RI-MP2-R12 approach with CABS in the framework of Ansatz 2.
RI-CC2-R12 and CCSD(R12) ground-state energies (Ansatz 2).

RI-CC2-R12 and CCSD(R12) excitation energies and response
properties (Ansatz 2).

Molecular gradients.

AIT

)

mnkl

An unsolved problem: The B matrix

The matrix B(¥) is defined as
Bf?ijn)kl — {Twmﬁanwa + TamcSané,B — TampfBn (5i + gj)} Takpgl

B(9) is a positive definite matrix. This is most easily seen by
assuming that ', 5 is diagonal with 'F,,5 = d,5c4. Then,

B(Z‘]) = Tampn (6o + € —&i— Ej) Takpl

It may happen that, due to the approximations in the theory, the
actually computed matrix B(“) is not positive definite. This may
give rise to numerical instabilities and unphysical excitation
energies and/or response properties.

We should invoke only those approximations that do not violate
the positive definiteness of the exact matrix B(*7).
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The simplest approach to the B'Y ; matrix

mnk
We rewrite B(¥) as
B(’LJ) — {Tfymﬁan’yOé -+ raméancSﬁ} TakBl — (51' + 5]’) ank:l
= ank‘l - (51' + 8j) ankl

The term — (&; + ;) Xinnii iS €asy to compute and positive
definite. We hence focus on B,,,,x;. For example,

| | |
r'ymﬁanyarak,Bl — TvimﬂLaniairaik,@Ll +r7LmﬁLnF'yLarak:,6Ll
| |
+ Tcm,BJ_nFcarak,BJ_l _{—TCmBJ_TLFCOéJ_TO{J_kﬂJ_l
|
+ T’YJ_man’YJ_O(J_raJ_kbl

A CABS is required to evaluate the above expression. The
numerical results are poor if we use

ankl ~0 and B%,L)kl ~ - (5i + 5]’) ankl
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The commutator integrals

We write Bfij )kl in first quantization,

BS{QM = (mn| f12Q12 (fl +fo—ei— 53’) Q2 frall)

Assuming the GBC, we may write

B%le ~ %(mn\flzélz[fl + fa, Q12 f12] K1)
+  Lmn|[f12Q12, f1 + 2] Q12 fro| k)
+ Z(entetemten—2e—2¢5) Xonnk

This reformulation leads to the commutator [f12Q12, f1 + f2] and
thus to [f12, f1]. Since only the kinetic energy and the exchange
operator do not commute with f1,, we obtain

[f12, f1] = [f12, T1] = [fr2, k1]
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Standard approximations A, B, C, ...

Considering [fi2, f1] = [f12,£1] — [f12, k1], one can assume that
the contributions from the commutator [f1, k1] are small and
negligible.

The integrals over | flz,fl] can be computed analytically while
the integrals over [f12, k1] require completeness insertions in
terms of the (C)ABS.

The complete neglect of [f12, l?:l] is denoted as “approximation
A”. The first implementation of the MP2-R12 method (in 1987)
was based on this approximation.

Approximation A is only used in MP2-R12 theory. The
MP2-R12/A model tends to overestimate (slightly) the magnitude
of the MP2 correlation energy.

The integrals over [f1,, k1] are considered in the MP2-R12/B
model. Approximation B is usually used beyond MP2.
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