R12 methods: Approximations and performance assessment

Wim Klopper and David P. Tew

Lehrstuhl für Theoretische Chemie Institut für Physikalische Chemie Universität Karlsruhe (TH)

C⁴ Tutorial, Zürich, 2–4 October 2006

The closed-shell CCSD-R12 Ansatz • CCSD-R12 theory has been implemented in a spin-free closed-shell fashion as well as in a spin-orbital formalism. • Here, we focus on the closed-shell CCSD-R12 method, where the cluster operator \hat{T} is written as $\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_{2'}$ $\hat{T}_1 = t_i^a E_{ai}$ $\hat{T}_2 = t_{ij}^{ab} E_{ai} E_{bj}$ $\hat{T}_{2'} = t_{ij}^{\alpha\beta} E_{\alpha i} E_{\beta j} = c_{ij}^{mn} r_{\alpha m\beta n} E_{\alpha i} E_{\beta j}$ • Summation over repeated indices is assumed (Einstein summation convention).

• The indices α and β refer to a *complete basis* of virtuals.

Correlation functions

The two-electron integrals

 $r_{\alpha m\beta n} = \langle \alpha \beta | \hat{Q}_{12} f_{12} | mn \rangle$

contain the projection operator \hat{Q}_{12} and the correlation function f_{12} , which is a function of the interelectronic distance r_{12} . Examples are:

$$f_{12} = f(r_{12}) = r_{12}$$

$$f_{12} = f(r_{12}) = \exp(-\gamma r_{12})$$

$$f_{12} = f(r_{12}) = c_k \exp(-\gamma_k r_{12}^2)$$

$$f_{12} = f(r_{12}) = c_k r_{12} \exp(-\gamma_k r_{12}^2)$$

• The form of the correlation function *f*₁₂ will only become important later.

Ansätze 1 and 2

• The projection operator \hat{Q}_{12} can be chosen in two manners, which are referred to as Ansatz 1 and Ansatz 2,

$$\hat{Q}_{12} = \begin{cases} \hat{Q}_{12}^{(1)} = (1 - \hat{P}_1)(1 - \hat{P}_2) & \text{Ansatz 1} \\ \\ \hat{Q}_{12}^{(2)} = (1 - \hat{O}_1)(1 - \hat{O}_2) - \hat{V}_1 \hat{V}_2 & \text{Ansatz 2} \end{cases}$$

• The projectors are:

 $\hat{P} = |\phi_p\rangle\langle\phi_p|$ is the projector onto the whole finite space

 $\hat{V} = |\phi_a
angle\langle\phi_a|$ is the projector onto the virtual space

$$\hat{O} = |\phi_i
angle\langle\phi_i|$$
 is the projector onto the occupied space

Ansätze 1 and 2 (continued)

• Within the complete basis $\{\phi_{\alpha}\}_{n_{occ}+1...\infty}$ of virtual orbitals, there are virtual orbitals $\{\phi_{a}\}_{n_{occ}+1...n_{bas}}$ inside the finite basis and virtual orbitals $\{\phi_{\alpha^{\perp}}\}_{n_{bas}+1...\infty}$ outside the finite basis,

$$\{\phi_{\alpha}\} = \{\phi_a\} \cup \{\phi_{\alpha^{\perp}}\}$$

$$\hat{Q}_{12}^{(1)} \sum_{\alpha\beta} |\alpha\beta\rangle = \sum_{\alpha^{\perp}\beta^{\perp}} |\alpha^{\perp}\beta^{\perp}\rangle$$

$$\hat{Q}_{12}^{(2)} \sum_{\alpha\beta} |\alpha\beta\rangle = \sum_{\alpha^{\perp}\beta^{\perp}} |\alpha^{\perp}\beta^{\perp}\rangle + \sum_{a\beta^{\perp}} |a\beta^{\perp}\rangle + \sum_{\alpha^{\perp}b} |\alpha^{\perp}b\rangle$$

Double excitations with one or two virtuals outside the finite space are generated in Ansatz 2, whereas Ansatz 1 is restricted to excitations with both virtuals in the orthogonal complement.

SKIT

The CCSD-R12 energy

The CCSD-R12 energy can be written as

$$\begin{split} E_{\text{CCSD-R12}} &= E_{\text{HF}} + \frac{1}{2} \langle \text{HF} | [[\hat{H}, \hat{T}_1], \hat{T}_1] + [\hat{H}, \hat{T}_2] + [\hat{H}, \hat{T}_{2'}] | \text{HF} \rangle \\ &= E_{\text{CCSD}} + \Delta E_{\text{R12}} \end{split}$$

Our task is to evaluate the R12 contribution

$$\Delta E_{\mathsf{R12}} = \frac{1}{2} c_{mn}^{ij} r_{\alpha m\beta n} \langle \mathsf{HF} | [\hat{H}, E_{\alpha i} E_{\beta j}] | \mathsf{HF} \rangle$$

with the Hamiltonian

$$\hat{H} = h_{\rm nuc} + h_{\kappa\lambda} E_{\kappa\lambda} + \frac{1}{2} g_{\kappa\lambda\mu\nu} \, e_{\kappa\lambda\mu\nu}$$

The Greek letters κ , λ , μ , ν denote a complete basis.

• $\langle \mathsf{HF} | [\hat{H}, E_{\alpha i} E_{\beta j}] | \mathsf{HF} \rangle$ must be evaluated in the *complete Fock space*.

KIT Karlsruhe Institute of Technology

The CCSD-R12 energy

We know from standard CCSD theory that

 $\langle \mathsf{HF}|[\hat{H}, E_{ai}E_{bj}]|\mathsf{HF}\rangle = 2L_{iajb} = 4g_{iajb} - 2g_{ibja}$

Hence, the R12 contribution is

 $\Delta E_{\rm R12} = c_{ij}^{mn} r_{\alpha m\beta n} L_{i\alpha j\beta}$

• If we define the amplitudes $t_{ij}^{\alpha\beta} = c_{ij}^{mn} r_{\alpha m\beta n}$, we can write the CCSD-R12 energy as

$$E_{ t CCSD-R12} = E_{ t HF} + (t^{ab}_{ij} + t^a_i t^b_j)L_{iajb} + t^{lphaeta}_{ij}L_{ilpha jeta}$$

<u> </u>

The CCSD-R12 singles projection

• In terms of the *T1-transformed Hamiltonian* $\tilde{\hat{H}}$, we find

$$\begin{split} \Omega_{ai} &= \left. \left\langle \begin{matrix} \bar{a} \\ i \end{matrix} \middle| \hat{\hat{H}} + [\hat{\hat{H}}, \hat{T}_{2} + \hat{T}_{2'}] \middle| \mathsf{HF} \right\rangle = \Omega_{ai}^{\mathsf{CCSD}} + \Omega_{ai}^{\mathsf{R12}} \\ \Omega_{ai}^{\mathsf{R12}} &= \left. \left\langle \begin{matrix} \bar{a} \\ i \end{matrix} \middle| [\hat{\hat{H}}, \hat{T}_{2'}] \middle| \mathsf{HF} \right\rangle \end{matrix} \right. \end{split}$$

Term CCSD part Corresponding R12 contribution

$$\begin{split} \Omega_{ai}^{\text{A1}} & u_{ki}^{cd} \tilde{g}_{adkc} & u_{ki}^{\gamma\delta} \tilde{g}_{a\delta k\gamma} &= \left(2c_{ki}^{mn} - c_{ik}^{mn}\right) r_{\gamma m\delta n} \, \tilde{g}_{a\delta k\gamma} \\ \Omega_{ai}^{\text{B1}} & -u_{kl}^{ac} \tilde{g}_{kilc} & -u_{kl}^{a\gamma} \tilde{g}_{kil\gamma} &= -\left(2c_{kl}^{mn} - c_{lk}^{mn}\right) r_{am\gamma n} \, \tilde{g}_{kil\gamma} \\ \Omega_{ai}^{\text{C1}} & u_{ik}^{ac} \, |\tilde{F}_{kc} & u_{ik}^{a\gamma} \, |\tilde{F}_{k\gamma} &= \left(2c_{ik}^{mn} - c_{ki}^{mn}\right) r_{am\gamma n} \, |\tilde{F}_{k\gamma} \\ \Omega_{ai}^{\text{D1}} & |\tilde{F}_{ai} & 0 \end{split}$$

Matrix elements V_{pq}^{rs}

• In the following, we shall use a compact notation for products of the two-electron integrals $r_{\alpha p\beta q}$ and $g_{r\alpha s\beta}$,

$$r_{\alpha p\beta q}g_{r\alpha s\beta} = V_{pq}^{rs}$$

• Hence,

$$\Delta E_{\text{R12}} = c_{ij}^{mn} r_{\alpha m\beta n} (2g_{i\alpha j\beta} - g_{i\beta j\alpha}) = (2c_{ij}^{mn} - c_{ji}^{mn}) V_{mn}^{ij}$$

$$\Omega_{ai}^{\text{A1-R12}} = (2c_{ki}^{mn} - c_{ik}^{mn}) r_{\gamma m\delta n} \tilde{g}_{a\delta k\gamma} = (2c_{ki}^{mn} - c_{ik}^{mn}) V_{nm}^{\tilde{a}k}$$

$$= (2c_{ik}^{mn} - c_{ki}^{mn}) V_{mn}^{\tilde{a}k}$$

• In first quantization,

$$V_{pq}^{rs} = \langle pq | f_{12} \hat{Q}_{12} r_{12}^{-1} | rs \rangle$$

Complementary auxiliary basis set (CABS)

- The $\Omega_{ai}^{\text{B1-R12}}$ and $\Omega_{ai}^{\text{C1-R12}}$ terms of the singles vector function cannot be expressed in terms of the V intermediate.
- Two-electron integrals with one index in the complementary virtual space are *approximated* by inserting an orthonormal, finite complementary auxiliary basis set (CABS),

$$\{\phi_{p'}\}_{1\dots n_{\rm cabs}}, \qquad \langle \phi_p | \phi_{q'} \rangle = \mathbf{0}, \qquad \langle \phi_{p'} | \phi_{q'} \rangle = \delta_{p'q'}$$

• For example,

$$\Omega_{ai}^{\text{B1-R12}} = \begin{cases} 0 & \text{in Ansatz 1} \\ -(2c_{kl}^{mn} - c_{lk}^{mn})r_{amp'n} g_{k\tilde{i}lp'} & \text{in Ansatz 2} \end{cases}$$

Karlsruhe Institute of Technology

The C1 term of the singles vector function

 Using the CABS, the C1 term of the singles vector function becomes

$$\Omega_{ai}^{C1-R12} = \begin{cases} 0 & \text{in Ansatz 1} \\ (2c_{ik}^{mn} - c_{ki}^{mn})r_{amp'n} {}^{\mathsf{L}}\!\tilde{F}_{kp'} & \text{in Ansatz 2} \end{cases}$$

• The matrix ${}^{I}\!\tilde{\mathbf{F}}$ is the standard inactive Fock matrix calculated from the T1-transformed one- and two-electron integrals,

$$\stackrel{lF_{kp'}}{=} h_{kp'} + 2g_{kp'i\tilde{i}} - g_{k\tilde{i}ip'}$$

 $= \stackrel{lF_{kp'}}{=} + (2g_{kp'ic} - g_{kcip'})t_i^c$

Three-electron integrals

- Thus far, we have introduced *only one approximation*, and only in the framework of Ansatz 2.
- This approximation concerns $\Omega_{ai}^{\text{B1-R12}}$ and $\Omega_{ai}^{\text{C1-R12}}$.
- For example, the exact evaluation of $\Omega_{ai}^{\text{B1-R12}}$ requires the computation of *three-electron integrals*,

$$\begin{aligned} r_{am\gamma n} g_{k\tilde{i}l\gamma} &= r_{am\gamma^{\perp}n} g_{k\tilde{i}l\gamma^{\perp}} \\ &= \langle mn\tilde{i}|f_{12}r_{23}^{-1}|alk\rangle - \langle mn|f_{12}|ap\rangle\langle p\tilde{i}|r_{12}^{-1}|lk\rangle \\ &= \langle mn\tilde{i}|f_{12}r_{23}^{-1}|alk\rangle - f_{ampn} g_{k\tilde{i}lp} \end{aligned}$$

 The key to the success of the R12 methods is the introduction of an approximation that avoids the evaluation of three-electron integrals.

SKIT

The standard approximation (SA)

• In R12 theory, the three-electron integrals are computed by inserting a resolution-of-the-identity (RI) approximation, that is

$$1 pprox |p''
angle \langle p''|$$

where $\{p''\}_{1...n_{abs}}$ is an orthonormal auxiliary basis set (ABS).

 Here and in the following, we choose this ABS as the union of the finite basis and the CABS,

$$\{\phi_{p''}\}_{1...n_{\text{abs}}} = \{\phi_p\}_{1...n_{\text{bas}}} \cup \{\phi_{p'}\}_{1...n_{\text{cabs}}}$$

 Inserting the RI approximation into the three-electron integrals leads to

 $\langle mn\tilde{i}|f_{12}r_{23}^{-1}|alk\rangle \approx f_{amp''n} g_{k\tilde{i}lp''}$

Standard approximation for V_{pq}^{rs}

• The projection operators

$$\hat{Q}_{12} = \begin{cases} \hat{Q}_{12}^{(1)} = (1 - \hat{P}_1)(1 - \hat{P}_2) & \text{Ansatz 1} \\ \\ \hat{Q}_{12}^{(2)} = (1 - \hat{O}_1)(1 - \hat{O}_2) - \hat{V}_1 \hat{V}_2 & \text{Ansatz 2} \end{cases}$$

lead to three-electron integrals, which are computed using the standard approximation,

$$(1-\hat{P}_1)(1-\hat{P}_2) \approx 1-\hat{P}_1\hat{P}_2-\hat{P}_1\hat{P}_2'-\hat{P}_1'\hat{P}_2$$

$$(1-\hat{O}_1)(1-\hat{O}_2)-\hat{V}_1\hat{V}_2 \approx 1-\hat{P}_1\hat{P}_2-\hat{O}_1\hat{P}_2'-\hat{P}_1'\hat{O}_2$$

• Clearly, there is no difference between $\hat{Q}_{12}^{(1)}$ and $\hat{Q}_{12}^{(2)}$ when CABS is not used.

Standard approximation for V_{pq}^{rs}

• SA for V_{pq}^{rs} in Ansatz 1:

$$\langle pq|f_{12}\hat{Q}_{12}^{(1)}r_{12}^{-1}|rs\rangle \approx \langle pq|f_{12}(1-\hat{P}_{1}\hat{P}_{2}-\hat{P}_{1}\hat{P}_{2}'-\hat{P}_{1}'\hat{P}_{2})r_{12}^{-1}|rs\rangle \\ = \langle pq|f_{12}r_{12}^{-1}|rs\rangle \\ - f_{pvqw}g_{vrws}-f_{pv'qw}g_{v'rws}-f_{pvqw'}g_{vrw's}$$

• SA for V_{pq}^{rs} in Ansatz 2:

$$\langle pq|f_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1}|rs\rangle \approx \langle pq|f_{12}(1-\hat{P}_{1}\hat{P}_{2}-\hat{O}_{1}\hat{P}_{2}'-\hat{P}_{1}'\hat{O}_{2})r_{12}^{-1}|rs\rangle \\ = \langle pq|f_{12}r_{12}^{-1}|rs\rangle \\ - f_{pvqw}g_{vrws} - f_{pv'qi}g_{v'ris} - f_{piqw'}g_{irw's}$$

Standard approximation for $r_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1}$

- For He in the cc-pVTZ basis, the three-electron integral $\langle 11|r_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1}|11\rangle$ can be evaluated analytically.
- It amounts to $\langle 11|r_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1}|11
 angle = -0.147\,806\,6$ a.u.
- Using an ABS, this integral is computed as follows:

ABS	$\langle 11 r_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1} 11\rangle$	Error
4s (uncontracted cc-pVDZ)	-0.1484274	-0.42%
6s (uncontracted cc-pVTZ)	-0.1478583	-0.035%
7s (uncontracted cc-pVQZ)	-0.1477898	0.011%
8s (uncontracted cc-pV5Z)	-0.1477697	0.025%
10s (uncontracted cc-pV6Z)	-0.1477519	0.037%

Karlsruhe Institute of Technology

SA w/CABS	for $r_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1}$		
• For He in the cc-pVTZ basis $\langle 11 r_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1} 11\rangle$ can be e • It amounts to $\langle 11 r_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1}$ • Using a CABS, this integral	s, the three-electron valuated analytical $ 11 angle=-0.147806$ is computed as fol	n integral ly. 6 a.u. lows:	
CABS	$\langle 11 r_{12}\hat{Q}^{(2)}_{12}r^{-1}_{12} 11 angle$	Error	
4s (uncontracted cc-pVDZ) 6s (uncontracted cc-pVTZ) 7s (uncontracted cc-pVQZ) 8s (uncontracted cc-pV5Z) 10s (uncontracted cc-pV6Z)	-0.1478289 -0.1478583 -0.1478124 -0.1478086 -0.1478086	0.015% 0.035% 0.004% 0.001% 0.001%	

Standard approximation for $r_{12}\hat{Q}_{12}^{(2)}r_{12}$

- For He in the cc-pVTZ basis, the three-electron integral $\langle 11|r_{12}\hat{Q}_{12}^{(2)}r_{12}|11\rangle$ can be evaluated analytically.
- It amounts to $\langle 11|r_{12}\hat{Q}_{12}^{(2)}r_{12}|11
 angle = 0.150\,750\,9$ a.u.
- Using an ABS, this integral is computed as follows:

$\langle 11 r_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1} 11\rangle$	Error
0.1996702	32%
0.154 384 5	2.4%
0.151 357 9	0.40%
0.1509746	0.15%
0.1516061	0.57%
	$ \begin{array}{c} \langle 11 r_{12}\hat{Q}_{12}^{(2)}r_{12}^{-1} 11\rangle \\ \\ 0.1996702 \\ 0.1543845 \\ 0.1513579 \\ 0.1509746 \\ 0.1516061 \end{array} $

Karlsruhe Institute of Technology

The vector function Ω_{aibj}

- To illustrate the derivation of the CCSD-R12 equations, we focus in the following on Ansatz 1.
- The equations for Ansatz 2 are left as an excercise.
- All of the equations can be derived from the standard CCSD equations,

$$\Omega_{aibj} = \Omega_{aibj}^{\mathsf{A2}} + \Omega_{aibj}^{\mathsf{B2}} + P_{ij}^{ab} \left(\Omega_{aibj}^{\mathsf{C2}} + \Omega_{aibj}^{\mathsf{D2}} + \Omega_{aibj}^{\mathsf{E2}} \right)$$

with

$$P^{ab}_{ij}A^{ab}_{ij} = A^{ab}_{ij} + A^{ba}_{ji}$$

• The R12 contributions to the conventional Ω_{aibj} vector function are obtained by virtue of the correspondence principle. Doubles amplitudes t_{ij}^{ab} in the conventional formulation must be replaced by those of the complete basis $\alpha\beta$.

SKIT

The conventional vector function Ω_{aibj}

$$\begin{split} \Omega^{A2}_{aibj} &= \tilde{g}_{aibj} + t^{cd}_{ij} \tilde{g}_{acbd} \\ \Omega^{B2}_{aibj} &= t^{ab}_{kl} \left(\tilde{g}_{kilj} + t^{cd}_{ij} \tilde{g}_{kcld} \right) \\ \Omega^{C2}_{aibj} &= -\frac{1}{2} t^{bc}_{kj} \left(\tilde{g}_{kiac} - \frac{1}{2} t^{ad}_{li} \tilde{g}_{kdlc} \right) - t^{bc}_{ki} \left(\tilde{g}_{kjac} - \frac{1}{2} t^{ad}_{lj} \tilde{g}_{kdlc} \right) \\ \Omega^{D2}_{aibj} &= \frac{1}{2} u^{bc}_{jk} \left(\tilde{L}_{aikc} + \frac{1}{2} u^{ad}_{il} \tilde{L}_{ldkc} \right) \\ \Omega^{E2}_{aibj} &= t^{ac}_{ij} \left({}^{l} \tilde{F}_{bc} - u^{bd}_{kl} \tilde{g}_{ldkc} \right) - t^{ab}_{ik} \left({}^{l} \tilde{F}_{kj} + u^{cd}_{lj} \tilde{g}_{kdlc} \right) \end{split}$$

• The intermediates L and u are defined as before,

$$L_{pqrs} = 2g_{pqrs} - g_{psrq}, \qquad u_{ij}^{ab} = 2t_{ij}^{ab} - t_{ji}^{ab}$$

 In Ansatz 1, the R12 contributions to the conventional vector function Ω_{aibj} are obtained from the terms with t^{cd}_{...} or u^{cd}_{...}.

R12 contributions to
$$\Omega_{aibj}$$
 in Ansatz 1

$$\Omega_{aibj}^{A2\text{-R12}} = t_{ij}^{\gamma\delta} \tilde{g}_{a\gamma b\delta} = c_{ij}^{mn} r_{m\gamma n\delta} \tilde{g}_{a\gamma b\delta} = c_{ij}^{mn} V_{mn}^{\tilde{a}\tilde{b}}$$

$$\Omega_{aibj}^{B2\text{-R12}} = t_{kl}^{ab} t_{ij}^{\gamma\delta} \tilde{g}_{k\gamma l\delta} = t_{kl}^{ab} c_{ij}^{mn} r_{m\gamma n\delta} \tilde{g}_{k\gamma l\delta} = t_{kl}^{ab} c_{ij}^{mn} V_{mn}^{kl}$$

$$\Omega_{aibj}^{E2\text{-R12}} = -t_{ik}^{ab} \left(2t_{lj}^{\gamma\delta} - t_{jl}^{\gamma\delta} \right) \tilde{g}_{k\delta l\gamma}$$

$$= -t_{ik}^{ab} \left(2c_{lj}^{mn} - c_{jl}^{mn} \right) r_{m\gamma n\delta} \tilde{g}_{k\delta l\gamma}$$

$$= -t_{ik}^{ab} \left(2c_{lj}^{mn} - c_{jl}^{mn} \right) V_{nm}^{kl} = -t_{ik}^{ab} \left(2c_{jl}^{mn} - c_{lj}^{mn} \right) V_{mn}^{kl}$$
• Before we proceed, we shall investigate the CC2-R12 model.

• Moreover, it is worthwile to rewrite the above equations explicitly for a two-electron system, where $c_{11}^{11}V_{11}^{11}$ is the R12 contribution to the energy.

CID-R12 eigenvalue equation for two electrons

 The explicitly-correlated configuration-interaction-with-doubles (CID-R12) eigenvalue equation for a two-electron system can be written in matrix form as follows:

$$\begin{pmatrix} 0 & V & \mathbf{g}^{\mathsf{T}} \\ V & H^{\mathsf{R}12} - E_{\mathsf{HF}} & \mathbf{V}^{\mathsf{T}} \\ \mathbf{g} & \mathbf{V} & \mathbf{H}^{\mathsf{conv}} - E_{\mathsf{HF}} \end{pmatrix} \begin{pmatrix} 1 \\ c \\ \mathbf{t} \end{pmatrix} = \Delta E \begin{pmatrix} 1 \\ c \\ \mathbf{t} \end{pmatrix}$$

• Thus, the conventional doubles equation reads

$$\mathbf{g} + \mathbf{V}c + (\mathbf{H}^{conv} - E_{HF})\mathbf{t} - \Delta E\mathbf{t} = \mathbf{0}$$

The R12 contributions to this equation are

$$\mathbf{V}c - \Delta E^{\mathsf{R}12}\mathbf{t} = \Omega_{a1b1}^{\mathsf{A2}\text{-}\mathsf{R}12} + \Omega_{a1b1}^{\mathsf{B2}\text{-}\mathsf{R}12} + 2\Omega_{a1b1}^{\mathsf{E2}\text{-}\mathsf{R}12} = c_{11}^{11}V_{11}^{ab} - t_{11}^{ab}c_{11}^{11}V_{11}^{11}$$

T1 transformation of the Fock operator

- The idea of the CC2 model is to partition the Hamiltionian in the Møller–Plesset manner into the Fock operator \hat{f} and the fluctuation potential $\hat{\Phi} = \hat{H} \hat{F} h_{nuc}$.
- Hence, we need to investigate the T1 transformations of \hat{f} and $\hat{\Phi}$ separately.

• Concerning $\tilde{\hat{f}}$, we find

 $\tilde{\hat{f}} = \exp(-\hat{T}_1)\hat{f}\exp(\hat{T}_1) = \hat{f} + [\hat{f}, \hat{T}_1]$ $[\hat{f}, \hat{T}_1] = t_i^a \, {}^{\mathsf{I}}\!F_{\kappa\lambda}[E_{\kappa\lambda}, E_{ai}] = t_i^a \left({}^{\mathsf{I}}\!F_{\kappa a}E_{\kappa i} - {}^{\mathsf{I}}\!F_{i\lambda}E_{a\lambda}\right)$

Assuming *canonical orbitals*, working onto the Hartree–Fock state yields

$$[\hat{f},\hat{T}_{1}]|\mathsf{HF}
angle = t_{i}^{a}(\varepsilon_{a}-\varepsilon_{i})E_{ai}|\mathsf{HF}
angle + t_{i}^{a}|F_{\alpha^{\perp}a}E_{\alpha^{\perp}i}|\mathsf{HF}
angle$$

The similarity-transformed Fock operator

 In the CCSD-R12 model, the similarity-transformed Fock operator is

$$e^{-\hat{T}_1 - \hat{T}_2 - \hat{T}_{2'}} \hat{f} e^{\hat{T}_1 + \hat{T}_2 + \hat{T}_{2'}} = \hat{f} + [\hat{f}, \hat{T}_1] + [\hat{f}, \hat{T}_2] + [\hat{f}, \hat{T}_{2'}]$$

• The commutators with \hat{T}_2 and $\hat{T}_{2'}$ give rise to

$$\begin{aligned} [\hat{f}, \hat{T}_{2}] |\mathsf{HF}\rangle &= t_{ij}^{ab} (\varepsilon_{a} + \varepsilon_{b} - \varepsilon_{i} - \varepsilon_{j}) E_{ai} E_{bj} |\mathsf{HF}\rangle \\ &+ t_{ij}^{ab} \left({}^{l}F_{\alpha \perp a} E_{\alpha \perp i} E_{bj} + {}^{l}F_{\beta \perp b} E_{ai} E_{\beta \perp j} \right) |\mathsf{HF}\rangle \\ [\hat{f}, \hat{T}_{2'}] |\mathsf{HF}\rangle &= t_{ij}^{\alpha\beta} \left({}^{l}F_{\kappa\alpha} E_{\kappa i} E_{\beta j} + {}^{l}F_{\kappa\beta} E_{\alpha i} E_{\kappa j} \right) |\mathsf{HF}\rangle \\ &- t_{ij}^{\alpha\beta} \left(\varepsilon_{i} + \varepsilon_{j} \right) E_{\alpha i} E_{\beta j} |\mathsf{HF}\rangle \\ &\left\langle \frac{\overline{a}}{i} \right| e^{-\hat{T}_{1} - \hat{T}_{2} - \hat{T}_{2'}} \hat{f} e^{\hat{T}_{1} + \hat{T}_{2} + \hat{T}_{2'}} |\mathsf{HF}\rangle = t_{i}^{a} (\varepsilon_{a} - \varepsilon_{i}) \end{aligned}$$

The conventional doubles projection

- Of special interest is the projection of $[\hat{f}, \hat{T}_{2'}]$ onto the conventional doubles.
- In Ansatz 1, this projection is exactly zero.
- In Ansatz 2, we obtain

In Ansatz 2, the projection is nonzero but (usually) very small.

• In Ansatz 2, the projection is zero if we assume that ${}^{I}\!F_{a\alpha_{\perp}} = 0$ (extended Brillouin condition, EBC).

GBC and EBC

- Besides the usual Brillouin condition (${}^{l}F_{ai} = 0$), we introduce two more conditions.
- The generalized Brillouin condition (GBC),

$${}^{\mathsf{I}}\!F_{\alpha_{\perp}i} \approx 0 \qquad ({}^{\mathsf{I}}\!F_{\alpha i} \approx 0)$$

The occupied space is closed under the Fock operator.

• The extended Brillouin condition (EBC),

 ${}^{l}F_{\alpha_{\perp}i} \approx 0$ and ${}^{l}F_{\alpha_{\perp}b} \approx 0$

The (finite) orbital space is closed under the Fock operator.

Assuming canonical orbitals, we may write

 ${}^{\mathsf{I}}\!F_{\kappa i} = \delta_{\kappa i}\varepsilon_i$ (GBC), ${}^{\mathsf{I}}\!F_{\kappa p} = \delta_{\kappa p}\varepsilon_p$ (EBC)

Karlsruhe Institute of Technology

The vector function $\Omega_{aibj}^{CC2-R12}$

• The CC2 model is an approximation to CCSD. In the doubles equation, the commutators with $\tilde{\hat{H}}$ are replaced by commutators with the Fock operator \hat{f} ,

$$\Omega_{aibj}^{\text{CC2}} = \left\langle \frac{\overline{ab}}{ij} \left| \tilde{\hat{H}} + [\hat{f}, \hat{T}_2] \right| \mathsf{HF} \right\rangle$$

• For CC2-R12, we find

$$\Omega^{ extsf{CC2-R12}}_{aibj} = \Omega^{ extsf{CC2}}_{aibj} + \left\langle egin{array}{c} \overline{ab} \\ ij \end{array} \middle| [\hat{f}, \hat{T}_{2'}]
ight| extsf{HF}
ight
angle$$

• In Ansatz 1, $\Omega^{CC2-R12}_{aibj} = \Omega^{CC2}_{aibj}$. In Ansatz 2,

 $\Omega^{\text{CC2-R12}}_{aibj} \approx \Omega^{\text{CC2}}_{aibj} + \left({}^{\text{I}}\!F_{ap'} \, r_{p'mbn} \, + \, {}^{\text{I}}\!F_{bq'} \, r_{amq'n} \right) c^{mn}_{ij}$

Some observations concerning CCSD-R12

- The projection onto the singles is easily computed for both Ansätze 1 and 2. The main ingredient is the intermediate V^{ãk}_{mn}.
 - All integrals can be evaluated using the standard approximation (CABS). GBS or EBC are not needed.
- The projection onto the doubles is easily obtained for both Ansätze 1 and 2 within the CC2-R12 model.
 - There is no R12 contribution in Ansatz 1. There is no R12 contribution in Ansatz 2 if the EBC holds.
- The CCSD-R12 projection onto the doubles is easily obtained for Ansatz 1 but its derivation is a bit tedious for Ansatz 2. The main ingredient is the intermediate V^{ãb}_{mn}.
 - All integrals can be evaluated using the standard approximation (CABS). GBS and EBC are not needed.

The projection onto the R12 doubles

The projection onto the R12 doubles is a projection onto the manifold

$$r_{lpha meta n} \left\langle egin{array}{c} \overline{lphaeta} \\ ij \end{array}
ight
vert$$

Note that the total number of such projections is $n_{\rm occ}^4$.

• Let us first consider the CC2-R12 model,

$$\begin{split} r_{\alpha m\beta n} \left\langle \frac{\overline{\alpha\beta}}{ij} \left| \hat{f} + [\hat{f}, \hat{T}_{1}] + [\hat{f}, \hat{T}_{2}] \right| \mathsf{HF} \right\rangle &= r_{\alpha m\beta n} \left\langle \frac{\overline{\alpha\beta}}{ij} \left| [\hat{f}, \hat{T}_{2}] \right| \mathsf{HF} \right\rangle \\ &= \left({}^{\mathsf{I}}\!F_{a\alpha_{\perp}} \, r_{\alpha_{\perp} mbn} \, + \, {}^{\mathsf{I}}\!F_{b\beta_{\perp}} \, r_{am\beta_{\perp} n} \right) t_{ij}^{ab} \\ &\approx \left({}^{\mathsf{I}}\!F_{ap'} \, r_{p'mbn} \, + \, {}^{\mathsf{I}}\!F_{bq'} \, r_{amq'n} \right) t_{ij}^{ab} \end{split}$$

• In Ansatz 1, the above projection vanishes.

The projection of $[\hat{f}, \hat{T}_{2'}]$ onto the R12 doubles

Recall that

$$[\hat{f}, \hat{T}_{2'}] |\mathsf{HF}\rangle = t_{ij}^{\alpha\beta} \left({}^{\mathsf{I}}\!F_{\kappa\alpha} E_{\kappa i} E_{\beta j} + {}^{\mathsf{I}}\!F_{\kappa\beta} E_{\alpha i} E_{\kappa j} \right) |\mathsf{HF}\rangle - t_{ij}^{\alpha\beta} \left(\varepsilon_i + \varepsilon_j \right) E_{\alpha i} E_{\beta j} |\mathsf{HF}\rangle$$

• We hence obtain

$$\begin{aligned} r_{\alpha m\beta n} \left\langle \frac{\overline{\alpha\beta}}{ij} \left| [\hat{f}, \hat{T}_{2'}] \right| \mathsf{HF} \right\rangle \\ &= \left\{ r_{\gamma m\beta n} {}^{l}\!F_{\gamma \alpha} + r_{\alpha m\delta n} {}^{l}\!F_{\delta\beta} - r_{\alpha m\beta n} \left(\varepsilon_{i} + \varepsilon_{j}\right) \right\} r_{\alpha k\beta l} c_{ij}^{kl} \\ &= \left\langle mn | f_{12} \hat{Q}_{12} \left(\hat{f}_{1} + \hat{f}_{2} - \varepsilon_{i} - \varepsilon_{j} \right) \hat{Q}_{12} f_{12} | kl \rangle c_{ij}^{kl} \\ &= B_{mnkl}^{(ij)} c_{ij}^{kl} = \left\{ B_{mnkl} - (\varepsilon_{i} + \varepsilon_{j}) X_{mnkl} \right\} c_{ij}^{kl} \end{aligned}$$

The R12 doubles equation in CC2-R12

• The complete R12 doubles equation in the CC2-R12 model is

$$r_{\alpha m\beta n} \left\langle \frac{\overline{\alpha \beta}}{ij} \left| [\hat{f}, \hat{T}_{2'}] + \tilde{\hat{\Phi}} \right| \mathsf{HF} \right\rangle = B_{mnkl}^{(ij)} c_{ij}^{kl} + \tilde{V}_{mn}^{ij} = \mathsf{0}$$

with

 $\tilde{V}_{mn}^{ij} = r_{\alpha m \beta n} \tilde{g}_{\alpha i \beta j}$

• For evaluating \tilde{V}_{mn}^{ij} , it is useful to note that

 $|lpha
angle\langle ilde{lpha}| = |lpha_{\perp}
angle\langle lpha_{\perp}| + |a
angle\langle ilde{a}|$

$$|a\rangle\langle\tilde{a}|+|\tilde{k}\rangle\langle k| = |p\rangle\langle p|$$

 $|\alpha\rangle\langle\tilde{\alpha}| + |\tilde{k}\rangle\langle k| = 1$

Setisruhe Institute of Technology

The intermediate \tilde{V}^{ij}_{mn}

• In Ansatz 1, we find

$$\begin{split} \tilde{V}_{mn}^{ij} &= r_{\alpha_{\perp}m\beta_{\perp}n}\tilde{g}_{\alpha_{\perp}i\beta_{\perp}j} = V_{mn}^{\tilde{i}\tilde{j}} \\ &\approx \langle mn|f_{12}r_{12}^{-1}|\tilde{i}\tilde{j}\rangle - f_{mvnw}\,g_{v\tilde{i}w\tilde{j}} \\ &- f_{mv'nw}\,g_{v'\tilde{i}w\tilde{j}} - f_{mvnw'}\,g_{v\tilde{i}w'\tilde{j}} \end{split}$$

• In Ansatz 2, we need the following relation:

$$\begin{aligned} &|\alpha_{\perp}\beta_{\perp}\rangle\langle\alpha_{\perp}\beta_{\perp}| + |\alpha_{\perp}b\rangle\langle\alpha_{\perp}\tilde{b}| + |a\beta_{\perp}\rangle\langle\tilde{a}\beta_{\perp}| \\ &= 1 - |vw\rangle\langle vw| - |\alpha_{\perp}\tilde{k}\rangle\langle\alpha_{\perp}k| - |\tilde{k}\beta_{\perp}\rangle\langle k\beta_{\perp}| \end{aligned}$$

• This yields for Ansatz 2,

$$\tilde{V}_{mn}^{ij} \approx \langle mn | f_{12} r_{12}^{-1} | \tilde{i} \tilde{j} \rangle - f_{mvnw} g_{v \tilde{i} w \tilde{j}} - f_{mv'n \tilde{k}} g_{v' \tilde{i} k \tilde{j}} - f_{m \tilde{k} n w'} g_{k \tilde{i} w' \tilde{j}}$$

Summarizing the CC2-R12 model (Ansatz 2)

• Ansatz 2 involves more terms than Ansatz 1,

$$\begin{split} E_{\text{CC2-R12}} &= E_{\text{CC2}} + (2c_{ij}^{mn} - c_{ji}^{mn})V_{mn}^{ij} \\ 0 &= \Omega_{ai}^{\text{CC2-R12}} = \Omega_{ai}^{\text{CC2}} + (2c_{ik}^{mn} - c_{ki}^{mn})V_{mn}^{\tilde{a}k} \\ &- (2c_{kl}^{mn} - c_{lk}^{mn})r_{amp'n} g_{k\tilde{i}lp'} \\ &+ (2c_{ik}^{mn} - c_{ki}^{mn})r_{amp'n} {}^{l}\!\tilde{F}_{kp'} \\ 0 &= \Omega_{aibj}^{\text{CC2-R12}} = \Omega_{aibj}^{\text{CC2}} + C_{mnab}c_{ij}^{mn} \\ 0 &= \Omega_{minj}^{\text{CC2-R12}} = B_{mnkl}^{(ij)} c_{ij}^{kl} + \tilde{V}_{mn}^{ij} + C_{mnab}t_{ij}^{ab} \end{split}$$

with

$$C_{mnab} = {}^{\mathsf{I}} F_{ap'} r_{p'mbn} + {}^{\mathsf{I}} F_{bq'} r_{amq'n}$$

• Again, the MP2-R12 model is obtained by omitting the singles projection and replacing \tilde{V}_{mn}^{ij} by V_{mn}^{ij} .

CC2-R12 excitation energies

 CC2-R12 excitation energies are obtained from the generalized eigenvalue problem

$$\mathbf{Ar} = \omega \mathbf{Sr}$$

where A is the Jacobian, r its right eigenvector, ω the excitation energy, and S the metric,

$$\mathbf{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & S_{klij}^{mni'j'} \end{pmatrix}, \qquad S_{klij}^{mni'j'} r_{mn}^{i'j'} = X_{klmn} r_{mn}^{ij}$$

• The Jacobian A contains the first derivatives of the vector functions, for example,

$$A_{klij}^{mni'j'} = \frac{\partial \Omega_{kilj}^{\text{CC2-R12}}}{\partial c_{mn}^{i'j'}} = \delta_{ii'} \delta_{jj'} B_{klmn}^{(ij)}, \quad A_{klij}^{mni'j'} r_{mn}^{i'j'} = B_{klmn}^{(ij)} r_{mn}^{ij}$$

CC2-R12 performance on excitation energies

 Calculated ¹P (2p←2s) excitation energy of Be in eV. A subset of the 20s17p14d11f8g5h set was used as orbital basis as well as ABS.

Basis	CC2	CC2-R12	CC2-R12+
sp spd spdf spdfg spdfgh	5.54 5.21 5.15 5.13 5.12	5.70 5.27 5.17 5.14 5.13	5.30 5.13 5.12 5.11 5.11
∞		5.11	

 The CC2-R12+ calculations include one additional set of seminatural p-type virtuals, providing R12 pair functions of ¹P symmetry.

The CCSD-R12 method in DIRCCR12-OS

- The CCSD-R12 method was developed and implemented into the DIRCCR12 program in 1992–1995.
- An open-shell version (UCCSD based on ROHF or UHF references) was developed in 2000. The program has since then be denoted DIRCCR12-OS.
- Triples corrections are available in the CCSD[T]-R12 and CCSD(T)-R12 models. Note that CCSD[T] is sometimes denoted CCSD+T(CCSD).
- The DIRCCR12 program uses neither ABS nor CABS. There is hence no distinction between Ansätze 1 and 2.
- The program is used for benchmark calculations on small closed- and open-shell systems using large basis sets.
- See http://www-laog.obs.ujf-grenoble.fr/~valiron/ccr12.

CCSD-R12 performance of ground-state energies

- 2001: CCSD-R12 calculations w/DIRCCR12 on Ne in a 19s14p8d6f4g3h (orbital) basis. Singlet valence-shell correlation energy: $\Delta E_{\rm S}^{\rm CCSD-R12} = -210.61 \text{ m}E_{\rm h}$.
- 2006: Feller *et al.* developed cc-pVXZ basis sets up to X=10.

Basis	Computed	Extrapolated (X ⁻³)
cc-pVTZ	-170.53	
cc-pVQZ	-192.73	-208.93
cc-pV5Z	-201.63	-210.96
cc-pV6Z	-205.47	-210.75
cc-pV7Z	-207.46	-210.84
cc-pV8Z	-208.56	-210.80
cc-pV9Z	-209.17	-210.61
cc-pV10Z	-209.56	-210.59
CCSD-R12	-210.61	

CCSD-R12 performance of ground-state energies

- 2001: CCSD-R12 calculations w/DIRCCR12 on Ne in a 19s14p8d6f4g3h (orbital) basis. Triplet valence-shell correlation energy: $\Delta E_{T}^{CCSD-R12} = -104.87 \text{ m}E_{h}$.
- 2006: Feller *et al.* developed cc-pVXZ basis sets up to X=10.

Basis	Computed	Extrapolated (X ⁻⁵)
cc-pVTZ	-95.81	
cc-pVQZ	-101.95	-103.86
cc-pV5Z	-103.86	-104.79
cc-pV6Z	-104.43	-104.82
cc-pV7Z	-104.65	-104.84
cc-pV8Z	-104.76	-104.88
cc-pV9Z	-104.81	-104.86
cc-pV10Z	-104.83	-104.86
CCSD-R12	-104.87	

SKIT Karlsruhe Institute of Technology

CCSD(T)-R12 calculations on $C_x H_y$

 CCSD(T)-R12 calculated atomization energies D₀(0K) in kJ/mol. Basis set: 19s14p8d6f4g3h for C and 9s6p4d3f for H.

Molecule	State	$Calc.^a$	Exptl. ^b
Methylidyne, CH	² Π	334.48	333.20
Methylene, CH ₂	${}^{3}B_{1}$	751.85	753.26
Methyl, CH ₃	${}^{2}A_{2}''$	1 209.64	1 209.61
Methane, CH ₄	${}^{1}A_{1}$	1641.97	1641.96
Carbon dimer, C ₂	${}^{1}\Sigma_{a}^{+}$	598.42	600.00
Ethynyl, C ₂ H	${}^{2}\Sigma^{+}$	1071.20	1073.42
Ethyne, C_2H_2	${}^{1}\Sigma_{a}^{+}$	1624.27	1626.50
Vinyl, C_2H_3	${}^{2}A'$	1766.81	1769 ± 5
Ethene, C_2H_4	$^{1}A_{g}$	2225.11	2 225.54
Allene, CH ₂ CCH ₂	${}^{1}A_{1}^{"}$	2798.71	2799.3

^{*a*} From CCSD(T)-R12 calculations including core-correlation effects, anharmonic zero-point vibrational energies, and scalar-relativistic and spin–orbit effects.

^b Computational Chemistry Comparison and Benchmark DataBase, http://srdata.nist.gov.cccbdb/.

CCSD(T)-R12 geometries

Analytical gradients are *not* available in DIRCCR12-OS. The geometries of the molecules CO, N₂, F₂, HF, H₂O, NH₃, CH₄, C₂H₂, HCN, HNC, CO₂, CN, NO, OH, NH₂, and CH₂ were computed by calculating the PES.

Basis: 19s14p8d6f4g3h2i for C, N, F, O and 9s6p4d3f2g for H.

56-Extrapolated results agree to within 0.01 pm with the CCSD(T)-R12 geometries.

CCSD(T)-R12 harmonic frequencies

 Harmonic vibrational frequencies have also been computed for the same molecules. For H₂O, for example, we find:

ω_e / cm $^{-1}$	cc-pV5Z a	cc-pV6Z a	$CCSD(T)-R12^{b}$
Symm. stre. ν_1 (a_1)	3840.1	3837.3	3835.9
Bend ν_2 (a_1)	1653.4	1651.3	1649.4
Antisymm. stre. ν_3 (b_2)	3949.3	3947.2	3946.7

 a Computed analytically using Aces II. b Computed numerically using DIRCCR12-OS.

- Benchmark calculations of this type are possible but time-consuming for molecules such as NH₃, CH₄, CO₂, and C₂H₂, in the 19s14p8d6f4g3h2i/9s6p4d3f2g basis set.
- The frequencies were obtained using Richardson's extrapolation.

SINT Karlsruhe Institute of Technology

Recent developments in CCSD-R12 theory

- Development of the CCSD(R12) model.
- Use of an auxiliary basis set (ABS or CABS).
- Implementation of Ansätze 1 and 2.
- Implementation of new correlation factors $f_{12} \neq r_{12}$.
- Implementation of CC2-R12 and CCSD(R12) response theory.
- Implementation of MP2-R12 nuclear gradients.
- All recent work took place in the framework of the Dalton program, for *closed-shell* coupled-cluster theory (see http://www.kjemi.uio.no/software/dalton).

The CCSD(R12) model: Theory

• Up to double excitations, the cluster operator is

$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_{2'}$$

 The CC2 model can be interpreted as an approximation to CCSD. In the doubles equations, the fluctuation potential is only transformed with the singles cluster operator Î₁.

• In a similar manner, the CCSD(R12) model is an approximation to CCSD-R12. In the R12 doubles equations, the similarity transformation of the fluctuation potential is restricted to the *conventional singles and doubles* operators \hat{T}_1 and \hat{T}_2 ,

 $\begin{array}{lll} \mathsf{CCSD-R12} & : & \langle \mu_{2'} | [\hat{f}, \hat{T}] + e^{-\hat{T}} \hat{\Phi} e^T | \mathsf{HF} \rangle = \Omega_{\mu_{2'}} = 0 \\ \mathsf{CCSD}(\mathsf{R12}) & : & \langle \mu_{2'} | [\hat{f}, \hat{T}] + e^{-\hat{T}_1 - \hat{T}_2} \hat{\Phi} e^{\hat{T}_1 + \hat{T}_2} | \mathsf{HF} \rangle = \Omega_{\mu_{2'}} = 0 \end{array}$

The CCSD(R12) model: Further approximations

• In addition to the restricted similarity transformation in the R12 doubles equations, we omit terms in the conventional doubles equations that are quadratic in $\hat{T}_{2'}$,

$$\frac{1}{2}\langle \mu_2 | [[\hat{\hat{H}}, \hat{T}_{2'}], \hat{T}_{2'}] | \mathsf{HF} \rangle \approx \mathsf{0}$$

Concerning triples corrections within the CCSD(T)(R12) model,

$$\langle \mu_3 | [\hat{f}, \hat{T}_3] + [\hat{\Phi}, \hat{T}_2] + [\hat{\Phi}, \hat{T}_{2'}] | \mathsf{HF} \rangle = 0$$

the contribution from $\hat{T}_{2'}$ is neglected.

- These further approximations are motivated by the fact that the contributions are small. In Ansatz 1, the contributions vanish exactly. In Ansatz 2, they are nonzero but very small.
- Neglecting commutators does not violate the size-extensivity of the methods.

The CCSD(R12) model: Performance

 Comparison between CCSD-R12 and CCSD(R12) valence-shell correlation energies of Ne in mE_h.

Basis	CCSD-R12	CCSD(R12)	Difference
	DIRCCR12-OS	Dalton	
aug-cc-pVDZ	-320.40	-295.13	25.27
aug-cc-pVTZ	-307.84	-301.24	6.60
aug-cc-pVQZ	-310.43	-309.32	1.11
aug-cc-pV5Z	-313.22	-312.99	0.23
aug-cc-pV6Z	-314.49	-314.52	-0.03

- Also for various small molecules, the differences between the CCSD-R12 and CCSD(R12) energies become negligible in the aug-cc-pVQZ basis.
- In a very small basis (aug-cc-pVDZ), the CCSD-R12 terms that are neglected in CCSD(R12) cannot be computed accurately.

Correlation functions other than r_{12}

• The two-electron integrals

$$r_{\alpha m\beta n} = \langle \alpha \beta | \hat{Q}_{12} f_{12} | mn \rangle$$

contain the correlation function $f_{12} = f(r_{12})$. In Dalton, various functions can be chosen.

• The only complication in the theory is that the product $f_{12}r_{12}^{-1}$ and the double commutator $\frac{1}{2}[f_{12}, [\hat{t}_1 + \hat{t}_2, f_{12}]]$ are more involved with a general f_{12} , because

$$r_{12} r_{12}^{-1} = 1$$

$$\frac{1}{2} [r_{12}, [\hat{t}_1 + \hat{t}_2, r_{12}]] = 1$$

 Since a few years, it has turned out that Slater-type geminals of the form exp(-ζr₁₂) are very effective in explicitly-correlated methods.

$exp(-r_{12})$ expanded in *n* Gaussians

Similar to STO-nG basis sets, the Slater-type geminal exp(-r₁₂) can be expanded in n Gaussians by minimizing

$$T = \int_0^\infty \left\{ e^{-r_{12}} - \sum_{k=1}^n c_k \, e^{-\zeta_k r_{12}^2} \right\}^2 \, e^{-2r_{12}} \, r_{12}^2 \, \mathrm{d}r_{12}$$

The figure shows the function $r_{12}^2 \exp(-2r_{12})$ (solid line) and the corresponding expansions with *n*=3 and *n*=4 Gaussians (dashed lines).

SALL Karlsruhe Institute of Technology

Comparison of correlation functions

- The correlation functions $\exp(-\zeta r_{12})$ and $r_{12} \exp(-\zeta r_{12})$ yield very similar results when the exponents differ by a factor of two.
- The Taylor expansions of both correlation functions have the same quadratic term when the exponents differ by a factor of two.
- The following valence-shell MP2 correlation energies (mE_h) are obtained in the aug-cc-pVQZ basis:

Molecule	r_{12}	$\exp(-r_{12})$	$r_{12} \exp(-\frac{1}{2}r_{12})$	Limit
CH_2	-154.3	-155.5	$-155.\bar{5}$	-156
H_2O	-297.1	-299.5	-299.5	-300
NH_3	-262.1	-263.9	-263.9	-264
N_2	-416.0	-419.5	-419.5	-421
F_2	-603.0	-608.7	-608.8	-612

Room for improvement: Basis sets

- Consider calculations on Ne with the correlation factor *r*₁₂ exp - ζ*r*₁₂. Scaling of the exponents of the polarization functions of a cc-pVXZ basis yields improved performance.
- Special basis sets for R12 calculations are needed.

Aug-cc-pVXZ (red), cc-pVXZ (black), and scaled cc-pVXZ (blue) results for X = 3, 4.

Dependence on exponent and scaling

of the cc-pVQZ results.

Performance of CCSD(T)(R12) w/STG

- CCSD(T)(R12) calculations were performed with an STG (exponent 1.3) in the aug-cc-pV(T+d)Z basis using Ansatz 2 and a 21s13p6d4f3g2h(S), 15s9p5d4f3g2h(N,O), 9s5p4d3f2g(H) CABS. The table reports valence-shell corr. energies in mE_h.
- This calculation performs as well as a conventional calculation in the aug-cc-pV(5+d)Z basis.
- Basis sets (orbital and CABS) have not yet been optimized!

Basis	SO ₃		HN	O ₃
	Conv.	(R12)	Conv.	(R12)
aug-cc-pV(T+d)Z	-945.27	-1023.82	-983.93	-1057.88
aug-cc-pV(Q+d)Z	-1003.78		-1038.49	
aug-cc-pV(5+d)Z	-1024.97		-1057.58	
TQ-Extrapolation	-1046.48		-1078.30	
Q5-Extrapolation	-1047.20		-1077.61	

Outlook: RI-MP2-R12

• The RI approximation of the RI-MP2 method (as implemented in Turbomole) can also be applied to the MP2-R12 approach. Highly accurate calculations on larger systems are becoming possible.

Binding energies of π -stacked and H-bonded dimers of 2-pyridone and 1,2,4,5tetrafluorobenzene, computed in the aug-cc-pVQZ basis.

Adiabatic electron affinity of uracil, computed in the aug-cc-pVQZ basis.

Outlook: To do's in Turbomole

- RI-MP2-R12 approach with "approximation C", which avoids the two-electron integrals over [t₁ + t₂, f₁₂].
- RI-MP2-R12 approach with effective core potentials (ECPs), possibly within a two-component framework to account for spin–orbit effects.
- RI-MP2-R12 approach with a Slater-type geminal.
- RI-MP2-R12 approach with CABS in the framework of Ansatz 2.
- RI-CC2-R12 and CCSD(R12) ground-state energies (Ansatz 2).
- RI-CC2-R12 and CCSD(R12) excitation energies and response properties (Ansatz 2).
- Molecular gradients.

 We should invoke only those approximations that do not violate the positive definiteness of the exact matrix B^(ij).

energies and/or response properties.

The commutator integrals

• We write $B_{mnkl}^{(ij)}$ in first quantization,

$$B_{mnkl}^{(ij)} = \langle mn | f_{12} \hat{Q}_{12} \left(\hat{f}_1 + \hat{f}_2 - \varepsilon_i - \varepsilon_j \right) \hat{Q}_{12} f_{12} | kl \rangle$$

Assuming the GBC, we may write

$$B_{mnkl}^{(ij)} \approx \frac{1}{2} \langle mn | f_{12} \hat{Q}_{12} [\hat{f}_1 + \hat{f}_2, \hat{Q}_{12} f_{12}] | kl \rangle \\ + \frac{1}{2} \langle mn | [f_{12} \hat{Q}_{12}, \hat{f}_1 + \hat{f}_2] \hat{Q}_{12} f_{12} | kl \rangle \\ + \frac{1}{2} \left(\varepsilon_k + \varepsilon_l + \varepsilon_m + \varepsilon_n - 2\varepsilon_i - 2\varepsilon_j \right) X_{mnkl}$$

• This reformulation leads to the commutator $[f_{12}\hat{Q}_{12}, \hat{f}_1 + \hat{f}_2]$ and thus to $[f_{12}, \hat{f}_1]$. Since only the kinetic energy and the exchange operator do not commute with f_{12} , we obtain

$$[f_{12}, \hat{f}_1] = [f_{12}, \hat{t}_1] - [f_{12}, \hat{k}_1]$$

Standard approximations A, B, C, ...

- Considering $[f_{12}, \hat{f}_1] = [f_{12}, \hat{t}_1] [f_{12}, \hat{k}_1]$, one can assume that the contributions from the commutator $[f_{12}, \hat{k}_1]$ are small and negligible.
- The integrals over $[f_{12}, \hat{t}_1]$ can be computed analytically while the integrals over $[f_{12}, \hat{k}_1]$ require completeness insertions in terms of the (C)ABS.
- The complete neglect of $[f_{12}, \hat{k}_1]$ is denoted as "approximation A". The first implementation of the MP2-R12 method (in 1987) was based on this approximation.
- Approximation A is only used in MP2-R12 theory. The MP2-R12/A model tends to overestimate (slightly) the magnitude of the MP2 correlation energy.
- The integrals over $[f_{12}, \hat{k}_1]$ are considered in the MP2-R12/B model. Approximation B is usually used beyond MP2.

