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Accuracy vs Effort

• To rival experimental accuracy it is essential to reproduce
the correlation between the motion of the electrons.

• The mean-field HF method recovers 99% of the total
energy, but the remaining 1% is critical for chemistry,
especially if the bonding situation changes significantly.

• Correlation is included in coupled cluster wave functions by
taking linear combinations of excited HF determinants.

• The accuracy of the wave function is improved by
increasing the number of determinants in the expansion.

• Double excitations are most important, then singles and
triples with minor contributions from higher excitations.

• For a given correlation method, the number of
determinants depends on the number of HF orbitals, which
is equal to the number of functions in the atomic orbital
basis. How does the energy depend on the size of the
orbital basis?

Orbital CI for He
• In a complete AO basis the CISD (or CCSD) method gives

the exact energy for He.
• Principal quantum number.

nmax Error (mEh)
1 42.044
2 6.050
3 1.883
4 0.815
5 0.424
6 0.248
7 0.157
8 0.106

• Partial wave expansion.

lmax Error (mEh)
0 24.696
1 3.108
2 0.958
3 0.403
4 0.206
5 0.119
6 0.074
7 0.050

• The convergence with the AO basis is extremely slow.
Chemical accuracy requires a cc-pV5Z basis or larger.

• The high angular momentum terms do not vanish since
they are required to reproduce the electronic cusp.



Orbitals and the cusp condition
• The cusp condition dictates that as the coordinates of two

electrons converge the wave function is linear in r12.

ψ = (1 + 1
2r12)ψr12=0 + O(r2

12) (different spin electrons)

• Orbital expansions introduce even powers of r12 into ψ.
• Consider the (spatial) 4 determinant expansion of He

Φ = 1s1s + c
∑

i

2pi2pi

= exp(−ζ1(r1 + r2)) + c exp(−ζ2(r1 + r2))(x1x2 + y1y2 + z1z2)

x1x2 + y1y2 + z1z2 = r1 · r2 = 1
2 (r2

1 + r2
2 − r2

12)

• This is equivalent to the partial wave expansion of r12,
which requires high angular momentum for convergence.
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The inter-electronic distance r12

• Electron correlation is manifest through the dependence of
the wave function on r12, the inter-electronic distance.

• A more efficient description of electron correlation may be
achieved if we include r12 explicitly in our expansion of ψ.
For a given accuracy ψ will then require fewer parameters.

• In particular the cusp condition may be satisfied explicitly
rather than through orbitals of high angular momenta.

• Methods that include r12 explicitly in the form of ψ are
called explicitly correlated methods.



Hylleraas’ method for He (1929)

• Hylleraas computed the energy of He to within 0.5 mEh.
• His explicitly correlated wave function contained only six

variational parameters.
ψ(r1, r2, r12) = exp(−ζs)(c0 + c1r12 + c2r

2
12 + c3s + c4s

2 + c5t
2)

• In a Hylleraas CI expansion the basis
functions are

sit2jrk
12e

−ζs

s = r1 + r2 t = r1 − r2

and a basis is defined by n such that
i + 2j + k ≤ n.

• The convergence to the basis set limit is much faster than
for orbital CI. Including all powers of r12 in the wave
function form reduces the effort required for chemical
accuracy from 120 to 13 CI terms.

Beyond Helium

• It is possible to extend the Hylleraas approach to
3-electron atoms in terms of the spatial basis functions

Φ = ri
1r

j
2r

k
3 rl

12r
m
13r

n
23 exp(−αr1 − βr2 − γr3)

• Wave functions of this form have similar accuracy to those
for helium.

• Computations of this type on molecules are much more
complicated, the integrals are harder to solve.

• The James-Coolidge functions yield accurate solutions to
the hydrogen molecule, in elliptic coordinates ξi, ηi, ϕi.

Φ = ξk
1 ηl

1ξ
m
2 ηn

2 rm
12 exp(−α(ξ1 + ξ2))

• These highly accurate wave functions are difficult to
generalize to larger systems and the resulting integrals
quickly become intractable.



Integrals involving r12

• For n-electron wave functions we must evaluate n-electron
integrals.

• The great simplification of orbital product based wave
functions is that only 2-electron integrals are required.

• If we use functions that depend explicitly on r12 then we
must be able to evaluate the resulting n-electron integrals.

• Due to the antisymmetry requirement the number of
permutations of the n-electron integrals to evaluate grows
as n!.

• There are various strategies for introducing explicit r12
dependence in a manageable way:

• Gaussian r12 dependence with analytic integrals.
• Using the transcorrelated Hamiltonian.
• Computing the many-electron integrals approximately.
• Using stochastic integration techniques.

Exponentially correlated Gaussians

• Consider the product of n 1-electron s-type Gaussians with
exponents ai at centers Ci

Φ(r) = s1(r1) · · · sn(rn) = exp
(
−

n∑
i=1

ai|ri −Ci|2
)

• In exponentially correlated Gaussians explicit dependence
on r12 is introduced into the n-electron basis function.

Φ(r) = exp
(
−

n∑
i=1

ai|ri −Ci|2 −
n∑

i<j=1

bij |ri − rj |2
)

(Boys)

• The extra term correlates the motion of all pairs of
electrons simultaneously. n-electron integration of these
ECGs is straightforward due to the Gaussian form.



• The above ECG basis function may also be written as

Φ(r) = exp
(
−

n∑
i,j=1

Aij(ri − si) · (rj − sj)
)

(Singer)

• Defining an ECG Φk(r), with exponents Ak
ij and centers sk

i ,
in the ECG approach the wave function is expanded as

Ψ(r,σσσ) =
∑

k

ckψk(r,σσσ)

ψk(r,σσσ) = Ân

(
Φk(r)Θn

S,MS
(σσσ)

)
• Ψ is variationally minimized with respect to all linear, ck and

nonlinear, Ak
ij , s

k
ix, sk

iy, s
k
iz parameters.

• The centers of the s-type Gaussians are permitted to float.
p, d · · · functions are not required (for

∑
electronic states).

Excited states using ECGs

• The s-type ECGs are well suited for describing S electronic
states of atoms and

∑
states of molecules.

• Excited states with S or
∑

symmetry correspond to the
higher roots of the eigenvalue equations for ck.

• For states with higher angular momenta it is sufficient to fix
the centers at the node and augment the ECGs with a
Cartesian prefactor.

• For atomic
∏

states one would use functions of the type

Φk(r) = y1 exp
(
−

n∑
i,j=1

Ak
ijri · rj

)
• States of higher angular momentum are computed

analogously.



Optimization of nonlinear parameters

• In the absence of symmetry each ECG basis function
contains n(n + 7)/2 nonlinear parameters.

• n(n + 1)/2 exponents Aij and 3n centers six, siy, siz.
• The variational minimization of the energy requires the

optimization of a large number of nonlinear parameters.
• One possible strategy is to optimize smaller subspaces of

parameters iteratively:
• Chose an initial set of Ak

ij and sk
i . (Random tempering)

• Optimize ck using linear algebra. (Davidson,Lanczos)
• Optimize Ak

ij and sk
i for one ECG basis function (Powell)

with the rest fixed. Involves repeated integral evaluation
and a knowledge of the derivatives.

• Cycle over all basis functions.
• Repeat until energy change is below a desired threshold.

• Both time consuming and tricky to get right.

Illustrative calculations: Li

Term Energy (Eh) Method
22S

-7.478060314 1536-term ECG
-7.478060322 1589-term Hylleraas

22P
-7.4105622 3700-term ECG
-7.4105651 1589-term Hylleraas

• This high accuracy makes it possible to study the tiny
energy contributions from the nuclear charge distribution,
or residual QED effects.

• Note that for the 22S ground state the 1536-term ECG
contains 9216 nonlinear parameters, whereas the
Hylleraas function contains only 3.



Illustrative calculations: H2

• Rapid convergence for the GS of equilibrium H2.

ECG basis Energy (Eh) ∆E (nEh)
75 -1.17447472649

150 -1.17447586067 1204.90
300 -1.17447592512 70.72
600 -1.17447593084 6.27

1200 -1.17447593121 0.55
2400 -1.17447593139 0.18

KW-883 -1.17447593074
KW is a generalized James-Coolidge function.

• Analogous calculations for other bond distances and
excited states enable the detailed study of the BO PES.
E.g. double minima due to avoided crossings and the
depths and positions of the vdW minima.

Summarizing the ECG method

Motivation: Integrals involving ECGs are (almost) all analytic.
Strategy: Variational minimization of linear and nonlinear

parameters. The highly flexible s-type Gaussians
adapt and shift to where they are most required.

Successes: Unrivaled accuracy for ground and excited state PES
of small molecules (H2, H3, He+n

2 , LiH). Typically
accurate to 9 significant figures with only a few
thousand terms.

Limitations: The large number of nonlinear parameters and
integral evaluations have prevented accurate
calculations on systems with more than 4 electrons.



The transcorrelated method

• In this method we write ψ(r,σσσ) = J(r)ψ0(r,σσσ)

ψ0(r,σσσ) = Ân

(
φ1(r1,σ1) · · ·φn(rn,σn)

)
(single determinant)

J(r) =
∏
i<j

exp
( ∑

κ

DκGκ(ri, rj) +
∑

λ

dλ

[
gλ(ri) + gλ(rj)

])
= exp

( ∑
κ

DκGκ(r) + 2
∑

λ

dλgλ(r)
)

= exp(C)

• The idea is that J correlates the motion of the n-electrons
and that ψ0 should be close to the HF determinant.

• The 1- and 2-electron functions gλ(ri) and Gκ(ri, rj) can
be chosen to take any form.

• In the transcorrelated method all the nonlinear parameters
Dκ and dλ, and the orbitals φI are optimized.

Avoiding the n-electron integrals

• If we try to variationally minimize the Rayleigh quotient
then 〈ψ0J |Ĥ|Jψ0〉 leads to n-electron integrals.

• Instead, the SE ĤJψ0 = EJψ0 is projected onto 〈ψ0J−1|
〈ψ0|J−1ĤJ |ψ0〉 = E

• ĤC = J−1ĤJ is called the transcorrelated Hamiltonian.
• Since J = exp(C) we may BCH expand exp(−C)Ĥ exp(C)

Ĥ + [Ĥ, C] + [[Ĥ, C], C] +[[[Ĥ, C], C], C]
1
2∇2

i
1
2

∑
j #=i(∇2

iCij + 2∇iCij ·∇i)
1
2

∑
jk #=i∇iCij ·∇iCik 0

− ZI
riI

+ 1
rij

0 0 0

• ĤC consists of only 1-, 2- and 3-electron operators so at
most 3-electron integrals are required.

• Note that we can choose J so that ĤC is cusp free.



• ĤC is non Hermitian. Variationally optimizing the
parameters can lead to energies below the exact value.

• The orbital parameters Xiα in φi =
∑

α Xiαχα and
correlation parameters Dκ, dλ are determined by solving

〈 ∂ψ0

∂Xiα
|J−1ĤJ − E|ψ0〉 = 0 singles

〈Gκ(r)ψ0|J−1ĤJ − E|ψ0〉 = 0 doubles
〈gλ(r)ψ0|J−1ĤJ − JĤJ−1|ψ0〉 = 0 singles

• The orbital equations are equivalent to SCF using ĤC .
• The functions Gκ involve single and double replacements

|Gκ(r)ψ0〉 =
∑

AIBJ

GAB
IJ |AB

IJ 〉+
∑
AI

GA
I |AI 〉+ G0ψ0

• Thus the correlation functions Gκ interfere with the orbitals.
• This redundancy is alleviated by the parameters dλ, which

satisfy the contraction equations. This makes ĤC as
Hermitian as possible in the space of single excitations.

Simplifications and extensions

• The above coupled equations can be largely decoupled by
using the HF orbitals without reoptimization.

• The parameters dλ are then related to the functions Gκ in a
fixed way and the contraction equations are solved only
once.

• The transcorrelated method then only involves the
nonlinear optimization of a few parameters Gκ.

• The transcorrelated method need not be restricted to a
single determinant.

• As a feasible alternative one could fix J such that the cusp
condition is satisfied, and then use the cusp free
transcorrelated Hamiltonian to optimize

ψ = J |CC〉 or ψ = J |CAS〉



Illustrative calculations: Ne (1969)

• Choose functions for Gκ and gλ such that the cusps are
satisfied and the HF orbitals are decoupled at large r12

G1(r1, r2) = 1
2

ar12

a + r12
gλ(r1) =

r1

a + r1

Gκ(r1, r2) = (r̄1r̄2)
i(r̄i

1 + r̄j
2)(r̄1 · r̄2)

k

r̄i =
r

a + r

• Use Slater functions for the orbital basis.
• Numerical integration of the 3-electron integrals.

Experimental predicted error
Ne -128.929 -128.959 -0.030
Ne+ -128.138 -128.166 -0.028
IP 0.791 0.793 0.002

Illustrative calculations: LiH, H2O (1972)
• Choose Gaussian functions for Gκ, gλ and orbitals.

3-electron integrals are then analytic.

Gκ(r1, r2) = exp(−aκr2
12 − bκr2

1Bκ
− cκr2

1Cκ
)

gλ(r1) = exp(−pλr2
1Pλ

)

χα(r1) = exp(−qαr2
1Qα

)

• Choose the centers Bκ, Cκ, Pλ, Qα to be located at one of
the nuclei. Define a basis by selecting the exponents aκ,
bκ, cκ, pλ, qα.

Ecorr Exact(1972)
LiH -0.076 -0.082
H2O -0.254 -0.364

• Note that even though the HF orbitals used in these
calculations are very poor approximations to the true HF
orbitals, reasonable correlation energies result.



Gaussian geminals

• The n-electron integration required for the ECG method is
reduced to at most 4-electron integration if each n-electron
basis function correlates only 2 electrons explicitly. E.g.

Φk(r) = exp
(
−

n∑
i=1

ak
i |ri −Ck

i |2− bk|r1 − r2|2
)

= exp(−bkr2
12)s

k
1 (r1) · · · sk

n(rn)

• This also reduces the number of nonlinear parameters in a
variational calculation.

• The computation of 4-electron integrals is nonetheless
expensive and this method has received little attention.

• Gaussian geminals are mostly applied in the framework of
pair theories such as MP2, CCD, etc.

The formally complete one-electron basis

• To use second quantization in the discussion of explicitly
correlated wavefunctions in pair theories we introduce the
concept of the formally complete one electron basis.

• The infinite set of one-electron functions, which can be
used to express the exact solutions to the Fock equation.

complementary

virtual

occupied

IJK

ABC

ABC

PQR

PQR
• This spin-orbital

notation will be used
throughout this lecture.



Gaussian geminals as pair clusters

• For a formally complete set of virtual orbitals

|CCD〉 = exp(T̂2)|HF〉 T̂2 = 1
2

∑
AIBJ

tABIJ τ̂ABIJ

• AB label the infinite set of virtual orbitals.
• The convergence of finite virtual orbital sets to the exact

limit is slow. We replace the set of virtual orbital pairs with
a set of explicitly correlated Gaussian geminals.

• In first quantization{
φA(x1)φB(x2)

}
→

{
Q̂12ϕk(x1,x2)

}
ϕk(x1,x2) = Â2 (Φk(r1, r2)Θk(σ1,σ2))

Φk(r1, r2) = exp(−br2
12)χ

k
1 (r1)χ

k
2 (r2)

χk
i (ri) = xlk

iCk
i
ymk

iCk
i
znk

iCk
i

exp(−ak
i |ri −Ck

i |2)

• Note that the orbitals AB are orthogonal to IJ . The
operator Q̂12 imposes this strong orthogonality condition
on the Gaussian geminals.

Q̂12 = (1− Ô1)(1− Ô2) Ô =
∑

I

|φI〉〈φI |

• The 2nd quantization representation of a HF determinant
with one orbital pair replaced by a Gaussian geminal is∑
AB

ḠABk |ABIJ 〉 ≡
∑
AB

ḠABk τ̂ABIJ |HF 〉 Ḡk
AB = 〈φAφB|ϕk〉



• The cluster operator now involves amplitudes cIJ
k for the

excitation of IJ into a Gaussian geminal k.

T̂2 = 1
4

∑
kAIBJ

cIJ
k ḠABk τ̂ABIJ

• In general different sets of ϕk can be used for each IJ .
• The CCD energy becomes

E = 〈HF|ĤT2 |HF〉
= EHF + 〈HF|Φ̂T̂2|HF〉
= EHF + 1

4

∑
kAIBJ

cIJ
k ḠABk 〈IJ |Φ̂|AB〉

= EHF + 1
4

∑
kAIBJ

cIJ
k ḠABk ḡIJ

AB

• The equations for the amplitudes cIJ
k are obtained by

projecting the coupled cluster Schrödinger equation onto
the doubles manifold spanned by the geminals.

0 = 〈µ2|ĤT2 |HF〉 = 〈µ2|[Ĥ, T̂2]|HF〉+ 1
2 〈µ2|[[Ĥ, T̂2], T̂2]|HF〉

=
∑
AB

ḠABk

[
〈ABIJ |[Ĥ, T̂2]|HF〉+ 1

2 〈ABIJ |[[Ĥ, T̂2], T̂2]|HF〉
]

• Only the first term is present in MP2 and LCCD. For
simplicity we write the amplitude equations as

0 = 1
2

∑
ABl

ḠABk F l
ABcIJ

l + 1
2

∑
AB

ḠABk V IJ
AB

F l
AB =

∑
C

[fCAḠl
CB + fCBḠl

AC]− (εI + εJ)Ḡl
AB

• V IJ
AB (long) contains terms linear and quadratic in cIJ

k .
• The amplitude equations are solved iteratively

0 =
∑
ABl

ḠABk F l
ABcIJ

l
[n+1]

+
∑
AB

ḠABk V IJ
AB(c[n])



Gaussian geminals: many electron integrals

• The above equations contain 3-, 4- and 5-electron integrals
• From the resolution of the identity we have∑

PQ
|PQ〉〈PQ| = 1 PQ span the complete basis

=
∑
AB

|AB〉〈AB|+
∑
IQ

|IQ〉〈IQ|+
∑
PJ

|PJ〉〈PJ |−
∑
IJ

|IJ〉〈IJ |

• Consider
∑
AB ḠABk ḡIJ

AB =
∑
AB〈φIφJ |Φ̂|φAφB〉〈φAφB|ϕk〉

= 〈φIφJ |Φ̂|φk〉 −
∑
MQ
〈φIφJ |Φ̂|φMφQ〉〈φMφQ|ϕk〉

−
∑
PN

〈φIφJ |Φ̂|φPφN 〉〈φPφN |ϕk〉+
∑
MN

〈φIφJ |Φ̂|φMφN 〉〈φMφN |ϕk〉

• The second and third terms are 3-electron integrals. They
arise due to the strong orthogonality (SO) projector.

• In general, a contraction over one or more indices AB · · ·
involving two operators such as Ḡ or f gives rise to
3-electron integrals.

• A further contraction over AB · · · involving another
operator results in 4-electron integrals, and so on.

• The CCD energy evaluation requires 3-electron integrals
and the amplitude equations involve 3-, 4- and 5-electron
integrals.∑

ABC
ḠABk fCAḠl

CB → 4-electron integrals∑
AB

ḠABk V IJ
AB → 3-, 4- and 5-electron integrals

• The 4- and 5-electron integrals prevent larger scale
applications and approximations are made to avoid them.



Removing the 4- and 5-electron integrals

• The 5-electron integrals only arise in two terms that
depend quadratically on the amplitudes. They are
expected to be small and are simply neglected → FCCD.

• All of the 4-electron integrals in the MP2 and LCCD are
removed by the weak orthogonality (WO) and super weak
orthogonality (SWO) approximations respectively.

• In the WO approximation the SO projector is removed and
replaced by a penalty function for nonorthogonality.

−1
2ḠABk

(
fCAḠl

CB + fCBḠl
AC − (εI + εJ)Ḡl

AB
)

cIJ
l = 1

2ḠABk V IJ
AB

−1
2ḠPQk

(
f̃RP Ḡl

RQ + f̃RQ Ḡl
PR − (εI + εJ)Ḡl

PQ
)

cIJ
l = 1

2ḠABk V IJ
AB

• ˜̂f = f̂ +
(

1
2 (εI − εJ)− εmin + η

)
Ô1

• The energy is still an upper bound and in the limit of a
complete geminal basis the exact energy is still obtained.

• Large values of η are required to prevent the pair functions
becoming contaminated with HF orbital pairs.

• The parameter η may be removed if one approximately
projects out this contamination from the amplitudes in each
iteration (WOP).

• The super weak orthogonality approximation involves the
replacement

1
2ḠABk V IJ

AB → 1
2ḠPQk Ṽ IJ

PQ − 1
2ḠMNk Ṽ IJ

MN

• where Ṽ indicates that V has been derived without
invoking the SO projector.

• The SWOP-FCCD approach is an approximate CCD
method where only 3-electron integrals need be evaluated.

• Approximate CCSD approaches are also available.



Two methods using Gaussian geminals

• The HF wave function is optimized in an orbital basis.
1. Optimize the Gaussian geminal basis by varying the

nonlinear parameters.
• Choose an initial set of (random tempered) exponents and

centers for the Gaussian geminals.
• Evaluate the integrals and compute the MP2 or CCD etc

amplitudes cIJ
k by solving the amplitude equations

iteratively.
• Optimize the nonlinear parameters using fixed amplitudes.
• Repeat cycle until converged to within a desired threshold.

2. Define a fixed Gaussian basis by choosing a set of
exponents b in a Gaussian correlation factor multiplying HF
orbitals.

Φk(r1, r2) = exp(−br2
12)φp(r1)φq(r2)

• Evaluate the integrals, solve the (MP2, CCD etc) amplitude
equations iteratively and compute the energy.

Illustrative calculations

FCCD correlation energies.
Ecorr (mEh) Method

LiH
-82.843 GTG
-82.834 R12

Ne
-378.66 GTG
-381.03 R12

• Optimizing nonlinear parameters
• High accuracy with few geminals.
• Restricted to very small systems.

MP2 correlation energies.
6 GTG exact

CH4 -210.16 -218.91
C2H2 -393.15 -404.68
C2H4 -358.77 -373.67
H2CO -423.75 -448.21
N2H4 -467.37 -498.32

• 6 GTGs, no nonlinear parameters.
• 90% accuracy using DZ HF basis.
• Restricted to small molecules.



Summarizing the Gaussian geminal method

Motivation: The n! growth of the number of n-electron integrals is
avoided by using Gaussian geminals in the context of
cluster functions.

Strategy: The large basis of virtual pair functions is replaced by
a much smaller set of geminal ECGs. Near basis set
limit correlation energies for the selected cluster
model are obtained by optimizing of the nonlinear
parameters.

Successes: Basis set limit CCSD, MP2, MP3 etc correlation
energies for very small molecules, typically with µEh

accuracy.
Limitations: The cost of evaluating numerous 3- and 4-electron

integrals restricts calculations to at most 10 electron
systems.

The linear R12 method

• We make the observation that
• The overall shape of ψ is well described in CC methods.
• Only the cusp is not well reproduced, leading to slow

convergence.
• In R12 methods explicitly correlated geminal functions that

can describe the cusp are added to the orbital basis.
• Contrast with the GTG method where the virtual orbitals are

entirely replaced by Gaussian geminals.
• The cusp condition for electron coalescence means that

ψ(r12≈0) = ψ(r12 =0) + csr12ψ(r12 =0) + O(r2
12)

• ψHF is usually a good zeroth order approximation to ψ and
the functions Ân(r12φ1(x1) · · ·φn(xn)) are well suited for
describing the cusp (all other particles well separated).



• In the language of first quantization this corresponds to
increasing the basis of pair functions

{φP φQ} → {φP φQ}+ {r12φIφJ}
• r12 is a 2-electron operator that acts on φIφJ . In second

quantization the operator r12 is represented by

1
2

∑
PQRS

rPQRSa†Pa†RaSaQ rPQRS = rPRQS = 〈PR|r12|QS〉

• PQRS span the formally complete basis.
• Acting r12 on |IJ〉 gives the pair function r12|IJ〉

1
2

∑
PQRS

rPRQS a†Pa†RaSaQa†Ia
†
J |vac〉 = 1

2

∑
PR

r̄PRIJ a†Pa†R|vac〉

• There is a substantial overlap between the conventional
orbital basis {φP φQ} and the R12 geminals {r12φIφJ}
which could lead to linear dependencies.

• We redefine our R12 geminal pair functions, introducing a
projector so that they are orthogonal to the orbital basis.

r12 → Q̂12r12 Q̂12 =
∑
AB

|AB〉〈AB|

• In second quantization the pair function Q̂12r12|IJ〉 is

1
2

∑
AB

r̄ABIJ a†Aa†B|vac〉

• Now let us consider the pair clusters in CC theory

a†Ia
†
J → a†Ia

†
J +

∑
A>B

tAB
IJ a†Aa†B + 1

2

∑
K>L

cKL
IJ

∑
AB

r̄ABKLa†Aa†B

• There are additional amplitudes cKL
IJ that represent the

probability of the excitation of pair IJ into the combination
of states represented by Q̂12r12|KL〉



CC-R12 methods

• In R12 methods a R12 doubles excitation operator T̂2′ is
added to the conventional cluster operator T̂ .

|CC-R12〉 = exp(T̂R12)|HF〉 T̂R12 = T̂ + T̂2′

T̂2′ = 1
4

∑
IJKL

cKL
IJ

∑
AB

r̄ABKLa†AaIa
†
BaJ = 1

4

∑
IJKL

cKL
IJ R̂KL

IJ

• The amplitudes cKL
IJ are determined by projecting the

Schrödinger equation onto the doubles manifold spanned
by the R12 geminals

0 = 1
2

∑
AB

r̄ABIJ 〈ABIJ |ĤTR12 |HF〉

• The energy is E = 〈HF|ĤTR12 |HF〉
• R12 is easily applied to all CC methods (plus response).

The difficulty lies in computing the R12 contributions.

R12 geminals: many electron integrals

• In the same way as for Gaussian geminals the CC-R12
equations involve 3-, 4- and 5-electron integrals.

• As an example, let us consider the term

1
2

∑
AB

r̄ABKL〈ABIJ |[F̂ , T̂2′ ]|HF〉 =

1
2

∑
ABMN

r̄ABIJ

( ∑
C

(fCAr̄MN
CB + fCB r̄MN

AC )− (εi + εj)r̄
MN
AB

)
cIJ
MN

=
∑
MN

(
F̄MN

KL − (εi + εj)X̄
MN
KL

)
cIJ
MN

• X̄MN
KL is the overlap between two R12 geminals and

requires 3-electron integration due to Q̂12.

X̄MN
KL = 1

2

∑
AB

r̄ABKLr̄MN
AB = 〈KL|r12Q̂12r12|MN〉



The approximate resolution of the identity

• In contrast to Gaussian geminals the many electron
integrals cannot be evaluated analytically. Instead the
approximate resolution of the identity is applied
successively so that only two electron integrals remain.

• Consider again the overlap matrix X̄MN
KL

X̄MN
KL = 〈KL|r12r12|MN〉+

∑
PQ

〈KL|r12|PQ〉〈PQ|r12|MN〉

−
∑
P

〈KLP |r12r23|PNM〉 −
∑
Q

〈KLQ|r12r13|MQN〉

• We introduce a large finite auxiliary orbital basis {φP ′}
such that the resolution of the identity is approximately
fulfilled in this basis.

1 ≈
∑
P ′

|P ′〉〈P ′|

• Wherever we have two operators that are linked by only
one coordinate we insert an approximate resolution of the
identity

r12r13 ≈
∑
P ′

r12|P ′
1〉〈P ′

1|r13

• The 3-electron integral becomes a sum of products of two
2-electron integrals

〈KLQ|r12r13|MQN〉 =
∑
P ′
〈KL|r12|P ′Q〉〈P ′Q|r13|MN〉

• In this way all 3-, 4- and 5-electron integrals may be
approximately evaluated using only 2-electron integrals,
which are available in conventional integral packages.

• Further approximations, such as the generalized Brillouin
condition, are also used to simplify the R12 equations.



Beyond linear R12

• The way the many-electron integrals are evaluated in R12
theory can be applied to any geminal functions, provided
that the required 2-electron integrals are available.

• Linear R12 geminal functions give a good description of ψ
close to the cusp, but are inappropriate at larger r12.

• It is much better to replace linear r12 with exp(−r12) (F12)

• The geminals exp(−r12)|IJ〉 are
able to describe the shape of ψ
over a wider range of r12.

• The 2-electron integrals involved
are (almost) analytic, but
complicated. It is easy to fit
exp(−r12) using Gaussians.

Illustrative calculations

• MP2-R12 and MP2-F12 correlation energies using
aug-cc-pVXZ basis sets.

Molecule Basis MP2-R12 MP2-F12
Thiophene aVDZ -0.887751

C5SH4 aVTZ -0.909028
aVQZ -0.893074 -0.914260
limit -0.9164(16) -0.9164(16)

Urea aVDZ -0.892774
CN2OH4 aVTZ -0.911071

aVQZ -0.901119 -0.915838
limit -0.9178(13) -0.9178(13)

• Currently CCSD(T)-R12 calculations an be performed
using 1000 basis functions and correlating 20 electrons.



Variational Monte Carlo
• In VMC the n-dimensional integration of a fully correlated

ψ is performed using Monte Carlo (stochastic) integration.
• A trial ψ is selected, e.g. Jψ0, and the nonlinear

parameters are varied to minimize the energy.
• MC integration is appropriate for evaluating expectation

values of multiplicative operators Â(x).
• The expectation value 〈A〉 is the weighted average of A(x)

over all space.

〈A〉 =

∫
A(x)ψ2(x)dx

• Each point x has a weight ψ2(x), the probability of the
particles being found at x.

• The energy is evaluated by averaging the local energy

EL(x) =
Ĥψ(x)

ψ(x)

Monte Carlo integration

• The familiar trapezium rule for numerical integration is

∫ 1

0
A(x)dx ≈ 1

N

N∑
i=1

A(xi)

• MC integration sums over N randomly generated (evenly
distributed) points, instead of regularly spaced points.

• Both are exact in the limit N →∞
• To evaluate expectation values 〈A〉 that involve integration

over all space we define a function y(x) that distributes
points in x according to the probability ψ2(x)

y(x) =

∫ x

−∞
ψ2(x̃)dx̃ 0 ≤ y(x) ≤ 1



• The randomly generated points 0 ≤ yi(x) ≤ 1 gives {xi}
that are distributed such that the density of points is ψ2(x).

∫
A(x)ψ2(x)dx =

∫ 1

0
A(x)dy ≈ 1

N

N∑
i=1

A(xi)

• The statistical error in the 3n-dimensional integration
decreases as N1/2 with the number of points N .

• The cost of MC integration is practically independent of n.
• The cost of VMC scales as n3, which is due to determinant

evaluations for computing ψ(x) and EL(x) .
• But, we require efficient methods for generating a set of

points distributed as ψ2(x). → Metropolis sampling

Metropolis sampling
• In the Metropolis method a walker samples the

configuration space efficiently by means of a random walk.
• Randomly select the direction of a step x→ x′
• If the ratio ψ2(x′)/ψ2(x) is larger than a random number

between 0 and 1, then the step is taken.
• Else, the walker does not move this time.

• In this way the points covered (sampled) by the walker are
distributed according to ψ2(x).

• The Metropolis sampling can be made more efficient
through using a type of importance sampling.

• Introduce a transition probability T (x→ x′) that favours
steps in the direction of increasing ψ2(x).

• A step is accepted or rejected if a random number between
0 and 1 is less or greater than

min

(
1,

ψ2(x′)
ψ2(x)

T (x→ x′)
T (x′ → x)

)



Trial wave function optimization
• Having obtained a set of points {xi} distributed as ψ2

T (x)
for a given trial wave function, the energy may be evaluated

〈ET 〉 =
1

N

N∑
i=1

ĤψT (xi)

ψT (xi)
=

1

N

N∑
i=1

EL(xi)

• The energy of a new ψT ′(x) with slightly different orbital
and correlation parameters may be estimated using the
original points and reweighting

〈ET ′〉 =

∑N
i=1 w2

i
ĤψT ′ (xi)
ψT ′ (xi)∑N

i=1 w2
i

wi =
ψT ′(x)

ψT (x)

• It is then possible to optimize the nonlinear parameters
without generating a new distribution for every new ψT ′(x).

• E is an upper bound to the exact energy, but has an
attached statistical error, which is reduced at extra cost.

Diffusion Monte Carlo

• In VMC the Metropolis method is used to sample the
distribution ψ2

T (x), where the form of ψT (x) is known.
• In DMC the Metropolis method is used to sample the exact

wave function directly.
• Consider the time dependent Schrödinger equation

i
∂Ψ

∂t
(x, t) = ĤΨ(x, t)

• The formal time dependent solutions are

Ψ(x, t) =
∞∑

n=0

cnψn(x) exp(−iEnt) Ĥψn(x) = Enψn(x)

• A general Ψ(x, t) can be expressed as a sum of the time
independent eigenstates, which rotate in the complex
plane with a frequency proportional to En.



• If we transform to imaginary time τ = it then

∂Ψ

∂τ
(x, τ) = −ĤΨ(x, τ) Ψ(x, τ) =

∞∑
n=0

cnψn(x) exp(−Enτ)

• As Ψ(x, τ) propagates in imaginary time the states all
decay exponentially. Since the excited states decay faster
than the ground state, Ψ(x, τ) collapses to the ground
state!

Compare
∂Ψ

∂τ
(x, τ) =

1

2
∇2Ψ(x, τ)− V (x)Ψ(x, τ) (1)

∂C

∂t
(x, t) = D∇2C(x, t)− kC(x, t) (2)

• The SE (1) is similar to the diffusion equation of a species
undergoing a first order reaction (2).

• Ψ(x, τ) is equivalent to the concentration of the species.
• V (x) determines whether the concentration is increasing or

decreasing at each point x.

Metropolis sampling in DMC

The evolution of Ψ(x, τ) to the exact GS via the diffusion
equation is simulated by representing Ψ(x, τ) as a population of
walkers.
• Initialize the population (e.g. {xi} from a VMC calculation)
• Move each walker by one time step ∆τ in a random

direction.
• At the new position each walker can give birth to a new

walker, or die, or just exist, depending on the sign of the
potential and a probability, given by a random number.

• V (x) negative → gives birth with probability −V ∆τ
• V (x) positive → dies with probability V ∆τ

• After long enough τ the population of walkers reaches a
steady state, representing the exact ψ0(x)



Importance sampling
• The convergence of DMC can be significantly accelerated

by using a good trial ψT (x) to guide the walkers.
• We define a function f(x, τ) = ψT (x)Ψ(x, τ) and

propagate f(x, τ) according to
∂f

∂τ
(x, τ) =

1

2
∇2f(x, τ)− 1

2
∇ · [∇ lnψT (x)f(x, τ)]− EL(x)f(x, τ)

• This equation represents diffusion, drift and first order
reaction.

• At large τ , f(x, τ) → ψT (x)ψ0(x) exp(−E0τ)
• This method introduces two improvements

• The drift term guides the walkers to regions where ψ0(x) is
large, accelerating the convergence.

• The birth and death rate now depends on the slowly
varying local energy EL, which is much easier to handle in
a computation.

• The energy is evaluated by averaging the local energy over
f .

The fixed node approximation

• The antisymmetry requirement for fermions means that
there are nodes in the wave function.

• The direct application of DMC as described above leads to
the bosonic state where there are no nodes.

• This is avoided by fixing the nodes of Ψ(x, τ) to be those of
a good ψT (x) - usually computed using VMC.

• The nodes partition the space and DMC is performed in
each volume separately.

• This fixed node approximation introduces an error and the
DMC energy is an upper bound.

• It is possible to release the nodes, allowing positive and
negative walkers to meet and cancel each other. This
method is currently inefficient and limited to small systems.



Illustrative calculations: small molecules

• FN-DMC and CCSD(T)/cc-pVTZ total energies (Eh).

Molecule FN-DMC CCSD(T)
CH4 -40.5005(3) -40.4381
NH3 -56.5485(4) -56.4732
C2H2 -77.3110(4) -77.1876
C2H4 -78.5644(3) -78.4388
H2CO -114.4739(4) -114.3338
H2O2 -151.5213(3) -151.3586
F2 -199.4841(4) -199.2961
O3 -225.3410(4) -225.1326

• The parentheses give the statistical errors. The error due
to the fixed node approximation can be as much as 10%

• Note: errors are less systematic for DMC than CCSD(T).
• Note that CCSD(T) scales as n7, compared to n3 for DMC.

Illustrative calculations: C20 isomers

Isomer FN-DMC CCSD(T)
Ring 1.0 1.7
Bowl 0.0 0.0
Cage 2.0 0.0

• The ring bowl and cage isomers are very close in energy.
• The system is at the limit of the capability of CCSD(T).
• It is possible to provide reliable energy differences (eV)

using QMC.



Concluding remarks

Method Scaling Accuracy Max. size
FCI n! mEh 2 atoms

CCSD(T) n7 mEh 10-20 atoms
ECGs n! nEh 4 electrons
GTGs n5, n6 µEh 10-20 electrons
R12 n5, n6, n7 0.1-1 mEh 10-20 atoms
QMC n3 10% Ecorr 250-500 atoms


