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• Dynamic and non-dynamic correlation

• Many electron systems
• Hartree-Fock theory
• Coupled-cluster theory

Computation as an investigative tool

• At a fundamental level, all of chemistry is determined by
the physics of the composite electrons and nuclei –
Quantum Mechanics.

• A chemical experiment can be reduced to finding an
accurate quantum mechanical treatment of the system.

We use computers to approximately solve the Schrödinger
equation, performing a "virtual experiment".

• The better our description of the system, the more reliable
our conclusions. We need to compute the wave function
accurately.
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• Plus much more ...
• The size of system we can treat depends critically on the

accuracy we require. However, computation is now at least
as reliable as experiment in many areas of chemistry.

Solvable systems

• Analytic solutions are only available for a few one-electron
systems related to H and H+

2 . Much of our treatment of
many electron systems is based on these solutions.

• The hydrogen atom ψ(r, θ,ϕ)
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• L̂2 is the total angular momentum operator whose
eigenfunctions are the spherical harmonics Ylm(θ, ϕ)
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The hydrogen orbitals
• The solutions to the hydgrogenic Schrödinger equation are

ψnlm(r, θ,ϕ) = Rnl(r)Ylm(θ, ϕ) En = − Z

2n2

• We attach a spin function σ for the spin of the electron.

Ŝzσms = msσ σ 1
2

= α σ− 1
2

= β

The hydrogen molecular ion

• The Schrödinger equation is separable if we transform to
elliptic coordinates ψ(ξ, η, ϕ).
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• The solutions are of the form ψ(ξ, η, ϕ) = N(ξ)M(η)χ(ϕ)
• N(ξ) is an infinite sum of associated Legendre polynomials.
• M(η) is an infinite sum of hypergeometric functions.
• χ(ϕ) is either cos mϕ or sin mϕ.

• The resulting orbitals exhibit D∞h symmetry. The quantum
number m dictates σ, π, δ · · · symmetry and each state is
either gerade or ungerade.

• The orbitals resemble linear combinations of the hydrogen
orbitals.



• Thus far, no analytic solutions to helium or H2 have been
found, or for any other system with more than one electron

• For the rest of chemistry we must approximate ψ.
• The underlying difficulty is that many particles interact

simultaneously and their motion is correlated.

This is the many body problem at the heart of chemistry.

• The approximate description of electron correlation is the
largest single source of error in our approximations to ψ.

• Since all interactions are pairwise, most of the physics
involved is present in 2-electron systems.

• The physics of electron correlation and the methods we
use to approximate ψ can be illustrated through examining
He and H2.

Helium: and uncorrelated model

• Thinking of the electrons as independent particles we may
write the helium wave function as a Hartree product of two
occupied spin orbitals.

ψH = φa(r1)σa(1)φb(r2)σb(2)

• The probability of locating electrons 1 and 2 at space-spin
coordinates x1 and x2 respectively is given by |ψ|2.

• For ψH this probability is a product of one factor for each
electron.

ρ(x1,x2) = φ2
a(r1)σ

2
a(1)φ2

b(r2)σ
2
b(2)

• The motion of each electron is therefore independent of
the other and the electrons are uncorrelated.



Pauli antisymmetry

• However, the Hartree description is fundamentally flawed.
It treats the two electrons differently, assuming that they
are distinguishable.

• In nature electrons are indistinguishable. Interchanging the
coordinates of two electrons does not affect a physically
observable quantity.

• In particular, the invariance of |ψ|2 means that

ψ(x1,x2) = ±ψ(x2,x1)

• Electrons are fermions and a sign change occurs.
• A physically acceptable wave function must satisfy this

Pauli antisymmetry.

• The Hartree description may be corrected by separately
symmetrizing or antisymmetrizing the space and spin
factors of ψH

ψA = [φa(r1)φb(r2) ± φb(r1)φa(r2)] [σa(1)σb(2)∓ σb(1)σa(2)]

ψA = Φ(r1, r2)Θ(1, 2)

• The probability is no longer a product of 1-electron factors,
the motion of electron 1 in space-spin coordinates depends
on that of electron 2.

• This is Fermi correlation. It has nothing to do with the
Coulomb repulsion between the electrons. It is purely a
consequence of their quantum nature.

• Let us examine the Fermi correlation present in the three
lowest states of He, and its energetic consequences.



Experimental energy levels of helium
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Singlet and triplet states

• For helium there is only one way to realize the
antisymmetric spin factor.

Θ0,0(1, 2) = 1√
2
[α(1)β(2)− β(1)α(2)]

• and three ways to realize the symmetric spin factor.

Θ1,1(1, 2) = α(1)α(2)

Θ1,0(1, 2) = 1√
2
[α(1)β(2) + β(1)α(2)]

Θ1,−1(1, 2) = β(1)β(2)

• These spin functions are eigenfunctions of the total and
z-projected spin operators with quantum numbers S and
MS respectively.

Ŝ2ΘS,MS = S(S + 1)ΘS,MS

ŜzΘS,MS = MSΘS,MS



• Θ0,0(1, 2) is a singlet state with zero total spin S = MS = 0.
• The three symmetric spin functions represent the three

components of a triplet state with total spin quantum
number S = 1 and z-projected spin MS = 1, 0,−1.

• In the non-relativistic limit there are no 2-electron spin
interactions and in the absence of an external magnetic
field the singlet and triplet spin states would be degenerate.

• However, the space and spin descriptions are coupled.
• Singlet states must combine with a symmetric spatial

function and triplet states with an antisymmetric spatial
function.

• This greatly affects the relative motion of the electrons in
space. To understand the energetics we must examine the
spatial part of the wave function.

The He ground state 11S

• Both electrons occupy the 1s orbital and the spatial
function is symmetric. Θ(1, 2) must therefore be
antisymmetric.

ψ11S(x1,x2) = φ1s(r1)φ1s(r2)
1√
2
[α(1)β(2)− β(1)α(2)]

• The effect of Fermi correlation is that the spin coordinates
of the two electrons are correlated. If electron 1 has spin
MS = 1

2 then electron 2 has spin MS = −1
2 .

• In other words spin orbitals can be at most singly occupied.
• The 2-electron density (the 2-electron probability

distribution) can be factorized into two 1-electron parts.

ρ(r1, r2) = φ2
1s(r1)φ

2
1s(r2)

• The spatial motion of the electrons is uncorrelated in this
simple orbital description.



The excited states 23S and 21S

• The first excited states of He are obtained by promoting
one electron from the 1s to the 2s orbital.

• The spatial factor can be either symmetric with triplet spin
or antisymmetric with singlet spin.

Φ23S(r1, r2) = 1√
2
[φ1s(r1)φ2s(r2)− φ2s(r1)φ1s(r2)]

Φ21S(r1, r2) = 1√
2
[φ1s(r1)φ2s(r2) + φ2s(r1)φ1s(r2)]

• The 2-electron probability distributions are
3ρ(r1, r2) = 1

2φ2
1s(r1)φ

2
2s(r2) + 1

2φ2
2s(r1)φ

2
1s(r2)

−φ1s(r1)φ2s(r1)φ1s(r2)φ2s(r2)
1ρ(r1, r2) = 1

2φ2
1s(r1)φ

2
2s(r2) + 1

2φ2
2s(r1)φ

2
1s(r2)

+φ1s(r1)φ2s(r1)φ1s(r2)φ2s(r2)

• The 2-electron probability distribution cannot be factorized,
the spatial motion of the electrons is Fermi correlated.

Fermi holes and Fermi heaps

• The probability distributions differ only in the last term.
• Wherever this term reduces the probability of the electrons

being located at r1, r2 for the triplet state, it is increased by
that same amount for the singlet state and vice versa.

• At r1 = r2 the triplet 2-electron probability vanishes,
creating a Fermi hole (exchange hole), a reduced
probability of finding the electrons close together.

3ρ(r1, r1) = 1
2φ2

1s(r1)φ
2
2s(r1) + 1

2φ2
2s(r1)φ

2
1s(r1)

−φ1s(r1)φ2s(r1)φ1s(r1)φ2s(r1) = 0

• For the singlet state there is therefore a Fermi heap, an
increased probability of finding the two electrons at the
same point in space.

• Since electrons repel each other the triplet state is
therefore lower in energy than the singlet state.



2-electron radial distribution functions P (r) = 16π2r2
1r

2
2ρ(r1, r2)
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Variational calculations
• Optimize the orbitals for the lowest energy singlet (11S)

and triplet (23S) states separately.
• Use the orbitals of the 23S calculation for the 21S state.

Ionization potentials and energy differences in eV
orbital exact experiment

IP(11S) 23.447 24.591 24.587
IP(23S) 4.742 4.768 4.767
IP(21S) 3.976 3.972 3.972

∆E(23S − 11S) 18.706 19.823 19.820
∆E(21S − 23S) 0.766 0.796 0.796

• Orbital occupancy and Fermi correlation give the correct
qualitative picture, it captures most of the physics.

• 4%-5% error means that it is not quantitative. The
instantaneous Coulomb repulsion has not been properly
accounted for, only in a mean field average sense.



Coulomb Correlation in helium

• Hartree products of orbitals are uncorrelated.
• Fermi correlation is introduced into the wave function due

to a symmetric linear combination of orbital products.
• Attempt to recover the remaining Coulomb correlation by

taking linear combinations of many orbital products.
• Properly symmetrize each orbital product before adding it

to our wave function.

Φ±(r1, r2) =
∑
p≥q

Cpq [φp(r1)φq(r2) ± φq(r1)φp(r2)]

• Each term represents an orbital configuration.
• The result is the configuration interaction wave function
• The coefficients Cpq are not determined by symmetry and

may be variationally optimized.

The orbital basis set
• Must choose the form of the orbitals for a CI calculation.
• Should constitute a complete set in the sense that we can

make our error arbitrarily small by including sufficiently
many orbitals in the CI expansion.

• The hydrogen orbitals are only complete if the (awkward)
continuum functions are included.

• Slater-type functions form a complete set and are a much
better choice

φnlm(r) = Nnl(ζr)lL2l+2
n−l−1(2ζr) exp(−ζr)Ylm(θ, φ)

• They have the same radial and angular structure as the
hydrogen orbitals, but depend on ζr rather than Zr/n.

• As a result Slater orbitals are much more compact.
Necessary to use various exponents to better reproduce
the hydgrogenic functions.



Slater-type Gaussians

• 2-electron integrals using Slater functions are only solvable
for 1-center and symmetric 2-center integrals.

• This is sufficient for He and H2, but a general treatment for
chemistry requires some approximations.

• The Gaussian product theorem says that the product of 2
Gaussians is another Gaussian.

exp(−ar2
A) exp(−br2

B) = exp(−qR2
AB) exp(−pr2

P )

q =
ab

a + b
RAB = A−B p = a + b P =

aA + bB
a + b

• This reduces 2-electron 4-center integrals to 2-center
2-electron integrals, which can be made to factorize.

• In most quantum chemistry programs the orbitals are linear
combinations of Gaussian functions fitted to resemble
Slater orbitals.

Principle vs partial wave expansions

• Having defined a set of functions there are two ways in
which to systematically increase the basis of orbitals
included in the CI expansion.

1s 2s 3s

3p

3d 4d

4f

4s

2p 4p

principal expansion

1s

2p

3d

4f

2s

3p

3s

4p

4s

5f

5d4d

5s

5p

partial!wave expansion

• It is observed that the energy gain from adding the next ns
function is of the same order as adding the set np, which is
of the same order as adding the nd set etc.

• Orbital basis sets are thus constructed according to the
principal quantum number expansion.

• The number of basis functions N is ∝ n2
max



CI calculations on the 11S ground state

• The error in the energy as a function of the number of
orbitals in the CI expansion.

Each point is a successive
maximum principle quantum
number nmax defining the
orbital basis used for
configurations

[φp(r1)φq(r2) ± φq(r1)φp(r2)]

• Very difficult to reduce the error below 3 kJmol−1 (0.03 eV).

Angular and radial correlation

• For nmax = 1 only the 1s orbitals enter the calculation,
representing a simple uncorrelated model.

• For nmax = 2, introduce 2s, 2px, 2py and 2pz functions.
• The CI wavefunction then includes the extra configurations

1s2s, 2s2, 2p2
x, 2p2

y and 2p2
z. (Note spherical symmetry).

• Each orbital configuration introduces a certain type of
correlation. The 2s orbital contains a radial node and
introduces radial correlation, making it less likely that the
electrons will be found the same side of the radial node.

φ2s(r) ∝ (3− 2ζr) exp(−ζr) φ2pz (r) ∝ z exp(−ζr)

• Likewise the 2p functions introduce angular correlation,
making it more likely that the electrons will be located at
opposite sides of nucleus.
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• As functions with higher principal quantum numbers, and
therefore more nodes, are introduced, the description of
the correlation becomes more accurate and the energy
converges towards the exact value.

Slow convergence to the exact wavefunction
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• Consider the cut of the wave function where both electrons
are at a radius of 0.5 a0.

• The exact wave function has a cusp, which the smooth
orbital functions are unable to describe.

• This is the reason for the observed slow convergence.



Cusps in the wavefunction

• The Hamiltonian for the helium atom is

Ĥ = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1
− 2

r2
+

1

r12

• The Hamiltonian becomes singular (diverges to infinity)
when one of the electron coincides with the nucleus or
when the two electrons coincide.

• The wave function satisfies Ĥψ = Eψ. In order for ψ not to
diverge, there must be infinities due to the kinetic energy
that exactly cancel those of the potential energy.

• Infinite second derivatives occur when the first derivative is
discontinuous → cusps.

• The requirement of exact cancellation imposes particular
conditions on these cusps, general to all molecular wave
functions.

Nuclear cusp conditions
• The infinity in the potential Z/ri is exactly canceled if the

partial derivative of ψ(x1, · · · , ri, θi,φi,σi, · · · ,xn) satisfies

∂ψ

∂ri

∣∣∣
ri=0

= −Zψ(ri = 0)

• In the region where ri ≈ 0 this means that

ψ(ri) = ψ(0)(1− Zri) + O(r2
i )

• Nuclear cusps are familiar since
they occur in the hydrogen 1s
orbital

ψ1s(r) =

(
Z3

π

)1/2

exp(−Zr)

=

(
Z3

π

)1/2

(1− Zr + O(r2))



• The cusp condition for p orbitals is different to that for s
orbitals. There is zero probability of locating an electron in
a p orbital at the nucleus and thus no singularity.

• But, for the Schrödinger equation to be satisfied for very
small ri, the wave function must vanish in a particular way.

• This results in a condition on the second derivatives

∂2ψ

∂r2
i

∣∣∣
ri=0

= −Z
∂ψ

∂ri

∣∣∣
ri=0

• The discontinuity in the second
derivative is present in the 2pz
hydrogen orbital

ψ2pz (z) =

(
32

π

)1/2

z exp(− |z|
2 )

=

(
32

π

)1/2

z(1− |z|
2 ) + O(z3)

Electronic cusp conditions
• The conditions on the wave function for when two electrons

coalesce are analogous to the nuclear cusp conditions.
• Two electrons with opposite spins have zero relative

angular momentum (S = 0, singlet).
• In the region of coalescence the wave function satisfies

∂ψ

∂r12

∣∣∣
r12=0

=
1

2
ψ(r12 = 0)

• Therefore there is a cusp in ψ

• Consider the He 11S ground state.
• Fix electron 2 at z = 0.5 a0 and

move electron 1 along the z axis.

ψ(r1, r2) = ψ|r12=0(1 + 1
2r12) + O(r2

12)



• Two electrons with the same spin have non zero relative
angular momentum (S = 1, triplet).

• There is zero probability of locating two electrons with the
same spin at the same point in space and the coalescence
condition applies to the second derivative.

∂2ψ

∂r2
12

∣∣∣
r12=0

=
1

2

∂ψ

∂r12

∣∣∣
r12=0

• For small r12

ψ(r1, r2) = r12 ·w12(1 + 1
4r12) + O(r3

12)

w12 =
∂ψ

∂r12

• There is no cusp in ψ, but there is
a cusp in the first derivative of ψ.

• Consider the He 23S ground state.

Convergence in CI type calculations

• The error in the energy for the triplet
state is smaller than for the singlet,
and decays faster.

• Note that every configuration in 23S
is correct to first order in r12, but
none display the discontinuity in the
second derivative.

• This slow energy convergence is indicative of all orbital
based calculations (MP2, CC, CI, etc).

• It is observed that, for optimal orbitals, the singlet and
triplet state errors decrease as n−3

max and n−5
max respectively.

• The error only reduces as N−1 with the number of basis
functions. For a method which scales as N4 each new
decimal place takes 10000 times longer.



Including r12 explicitly

• The principal deficiency in the CI wave function is the
inability to model the discontinuities in the exact ψ.

• If a single term, explicitly dependent on r12, is added to the
CI expansion then the convergence is much faster (n−7

max).

(1 + cr12)φ1s(r1)φ1s(r2) (1 + cr12) [φ1s(r1)φ2s(r2)− φ2s(r1)φ1s(r2)]

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  50  100  150  200  250  300  350  400  450  500

E
rr

o
r 

 (
E

h
)

Number of basis functions

CI

CI-R12
11S

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  50  100  150  200  250  300  350  400

E
rr

o
r 

 (
E

h
)

Number of basis functions

CI

CI-R12
23S

• For the singlet c ≈ 1
2 , describing the cusp. For the triplet

c ≈ 1
4 , describing the second derivative discontinuity.

Lessons from helium

• The antisymmetry requirement for electronic wave
functions leads to Fermi correlation of the electrons.

• Triplet states exhibit Fermi holes.
• Closed shell singlet states are spatially uncorrelated.
• Open shell singlet states exhibit Fermi heaps.
• Fermi correlation accounts for the main spectral features.

• The instantaneous Coulomb interaction between electrons
also correlates their motion, Coulomb correlation.

• Electrons avoid each other as much as possible.
• CI calculations correct for Coulomb correlation.

• Wave functions exhibit cusps at the nuclei and at electron
coalescence.

• The nuclear cusp is well described by atomic orbitals.
• The electronic cusp is not, resulting in slow convergence.
• Including r12 explicitly in the wave function significantly

accelerates convergence → chemical accuracy.



The orbital picture for H2

• The orbital solutions to H+
2 resemble symmetrized

combinations of the hydrogenic orbitals.
• For the H2 molecule we construct an orbital basis in the

same vein. Let us take a minimal basis of 1s AOs.
• The MOs must possess the D∞h symmetry of the

molecule.

φσg (r) = Ng[φsA(r) + φsB (r)]
φσu(r) = Nu[φsA(r)− φsB (r)]

• The symmetry adapted linear combinations of atomic
orbitals are normalized by Ng and Nu.

• φσg(r) is a nodeless bonding orbital. φσg(r) is an
antibonding orbital with a nodal plane bisecting the two
atoms A and B.

Fermi correlation in H2

• There are 4 spin orbitals and 2 electrons. The 6 states,
satisfying Pauli antisymmetry, are the doubly occupied
bonding and antibonding singlet states.

ψ0,0
11Σ+

g
(x1,x2) = φσg (r1)φσg (r2)Θ0,0(1, 2)

ψ0,0
21Σ+

g
(x1,x2) = φσu(r1)φσu(r2)Θ0,0(1, 2)

• and the open shell singlet and triplet states (MS = 1, 0,−1)

ψ0,0
11Σ+

u
(x1,x2) = 1√

2
[φσg (r1)φσu(r2) + φσu(r1)φσg (r2)]Θ0,0(1, 2)

ψ1,MS

13Σ+
u

(x1,x2) = 1√
2
[φσg (r1)φσu(r2)− φσu(r1)φσg (r2)]Θ1,MS (1, 2)

• In the same way as for He, the doubly occupied states are
spatially uncorrelated. The open shell triplet and singlet
states exhibit Fermi holes and Fermi heaps respectively.
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• The cut of the 2-electron density functions for the open
shell singlet and triplet states where both electrons are on
the molecular axis.

• There is zero probability of finding both electrons at the
same point on the molecular axis for the triplet (Fermi
hole).

• There is zero probability of finding the electrons at exactly
opposite ends of the molecule for the singlet (Fermi heap).

• Coulomb correlation will modify description, but does not
remove these nodes or change the energy level ordering.

Dynamic and non-dynamic Coulomb correlation

• Coulomb correlation is introduced through taking linear
combinations of orbital products. In our minimal AO basis
only the two states with the same symmetry mix.

• It is instructive to examine the amount of mixing as the H2

bond is stretched.
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(a) Fermi correlation in 3Σ+
u , 1Σ+

u . (b) Coulomb correlation in 1Σ+
g .

• In the absence of Coulomb correlation the bonding and
antibonding 1Σ+

g states become degenerate as the bond
length increases.



• The amount of Coulomb correlation varies significantly with
bond length.

• At equilibrium it is small, amounting to less than 1% of the
energy. In this situation the Coulomb correlation is referred
to as dynamic correlation.

• At infinite separation the bonding and antibonding states
mix strongly, lifting the degeneracy and creating an ionic
state and a covalent state.

1
2φσg(r1)φσg(r2) + 1

2φσu(r1)φσu(r2) = φsA(r1)φsA(r2) + φsB(r1)φsB(r2)
1
2φσg(r1)φσg(r2)− 1

2φσu(r1)φσu(r2) = φsA(r1)φsB(r2) + φsB(r1)φsA(r2)

• It is necessary to use more than one product of MOs to
achieve a qualitatively correct description.

• Here the Coulomb correlation is referred to as
non-dynamic correlation.

• This situation occurs when there are degeneracies in
orbital products and it is common practice to include all
products in the zeroth order description of the system
(Multi-reference).

• Degeneracies can also occur in atoms and molecules, not
just for stretched bonds. Typical examples are Be and
transition metals, where orbital configurations are similar in
energy. In these cases this Coulomb correlation is referred
to as static correlation.

• Dynamic, non-dynamic and static correlation are not
physically different, all arise from the Coulomb repulsion
between the electrons.

• The distinction is an operational one, connected to the
machinery we use to treat them.

• In this tutorial we are concerned with the methods used to
accurately treat dynamic correlation.



Fermi correlation in many-electron systems
• Having illustrated Fermi and Coulomb correlation in the

2-electron systems He and H2 let us move on to the
methods we use to treat many electron systems.

• The first issue is how to construct an antisymmetric
n-electron wave function that has a well defined total and
z-projected spin.

• The n-electron spin eigenfunctions with spin quantum
numbers S and MS are known. E.g.

Θ3
1
2

1
2

(σσσ) = αβα− βαα 3-electron doublet

• It is always possible to construct a n-electron wave
function by antisymmetrizing the product of separate space
and spin functions.

ψ(r,σσσ) = Ân

(
Φ(r)Θn

S,MS
(σσσ)

) Â =
1√
n!

n!∑
u

puP̂u

Slater determinants

• An alternative method is to antisymmetrize a product of
spin orbitals directly. This is equivalent to a determinant of
a matrix.

ψ(r,σσσ) = Ân (φ1(r1)σ1(1), · · · ,φn(rn)σn(n))

= 1√
n!

∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) · · · φn(x1)
φ1(x2) φ2(x2) · · · φn(x2)

...
...

. . .
...

φ1(xn) φ2(xn) · · · φn(xn)

∣∣∣∣∣∣∣∣∣
• Determinantal wave functions are always eigenfunctions of

Ŝz (they have a fixed number of α and β electrons), but
they are not guaranteed to be eigenvalues of Ŝ2.

• Determinants have many mathematically convenient
properties.



Properties of determinants
• Interchanging two matrix rows or columns (permuting two

electrons) results in a sign change det |P̂12A| = − det |A|.
• Unitary linear transformations of the orbitals leave the

wave function unchanged.

det |UA| = det |U | det |A| = det |A|
• Even though the determinant contains n! terms, integrals

over determinants are easy to evaluate. E.g.

〈E〉 = 〈AΦ|Ĥ|AΦ〉 = 〈Φ|Ĥ|
n!∑
u

puP̂uΦ〉

=
n∑
i

〈φi|ĥ|φi〉+ 1
2

n∑
ij

〈φiφj |(1− P̂12)ĝ|φiφj〉

• All permutations where the orbital ordering in the ket is
different to the ordering in the ket are zero, unless the
differing orbitals are affected by Ĥ.

Configuration state functions
• Wave functions that are eigenfunctions of Ŝ2 can be

constructed from linear combinations of determinants.
These are called configuration state functions (CSF).

• Let us consider again the lowest three states of helium.

ψ0,0
11S = 1√

2
det |1sα1sβ|

ψ1,1
13S = 1√

2
det |1sα2sα|

ψ1,0
13S = 1

2 det |1sα2sβ| + 1
2 det |1sβ2sα|

ψ1,−1
13S = 1√

2
det |1sβ2sβ|

ψ0,0
21S = 1

2 det |1sα2sβ|− 1
2 det |1sβ2sα|

• Closed shell and high spin open shell states are
represented by single determinants, with well defined S
and MS . Low spin open shell states are linear
combinations.

• These conclusions are general to n-electron systems.



Hartree-Fock theory

• The determinant representation of the wave function is
most the practical for many electron systems.

• Single determinants correctly describe Fermi holes for like
spin electrons in closed shell or high spin open shell
states. Single Slater determinants cannot describe Fermi
heaps, but they do not occur in these states.

• In the Hartree-Fock method the orbitals are variationally
optimized, subject to remaining orthonormal.

• Consider an infinitesimal change to the spin-orbitals.
E[ψ + δψ] =

∑
i

〈φi + δφi|ĥ|φi + δφi〉

+ 1
2

∑
ij

〈(φi + δφi)(φj + δφj)|ĝ|(φi + δφi)(φj + δφj)〉

− 1
2

∑
ij

〈(φi + δφi)(φj + δφj)|ĝ|(φj + δφj)(φi + δφi)〉

• To get the first order variation δ1E[ψ] we collect terms
linear in δφ.

δ1E[ψ] =
∑

i

〈δφi|ĥ|φi〉+
∑
ij

(
〈δφiφj |ĝ|φiφj〉 − 〈δφiφj |ĝ|φjφi〉

)
+ c.c.

=
∑

i

〈δφi|ĥ|φi〉+
∑

i

〈δφi|Ĵ − K̂|φi〉+ c.c.

=
∑

i

〈δφi|F̂ |φi〉+ c.c.

• F̂ is the Fock operator and it is Hermitian.
• The optimum orbitals minimize E[ψ] so δ1E[ψ] vanishes.

We therefore have the Hartree-Fock equation for each
orbital

〈δφi|F̂ |φi〉 = 0

• Let us expand δφi in terms of a complete orthonormal
orbital basis, partitioned into the current orbitals and a
complementary set.



δφi =
n∑
j

Uijφj +
∞∑
a

Uiaφa

• The first term is a unitary transformation of the occupied
orbitals and leaves ψ unchanged.

• From the second term we arrive at the set of general
Hartree-Fock equations for the optimum orbitals φi.

〈φa|F̂ |φi〉 = 0

• This is satisfied if the function F̂φi is orthogonal to all φa

F̂φi =
n∑
j

λjiφj λji = λ∗ji = 〈φj |F̂ |φi〉

• We can transform the occupied orbitals among themselves
to diagonalize the Hermitian matrix λji, arriving at the
familiar canonical Hartree-Fock equations

F̂φi = εiφi

The self consistent field procedure

• The Fock operator that defines the orbitals in fact depends
on the very orbitals it defines.

F̂1 = − 1
2∇2

1 −
∑

I

ZI

rI1
+

n∑
j

∫
φj(r2)(1− P̂12)

1

r12
φj(r2)dr2

• The Hartree-Fock equations must therefore be solved self
consistently.

• An initial set of orbitals are used to construct the Fock
operator, the solution of which yields a new set of orbitals.

• A new Fock operator is constructed and so on until the
equations are self consistent.

• Physically this means that each orbital adjusts to the mean
repulsive field due to the electrons in the other orbitals.



The Roothaan-Hall equations

• The above equations define the orbitals that give the best
Slater determinant wave function.

• The are coupled integro-differential equations and are
difficult to solve directly.

• If we expand the orbitals in terms of a finite set of basis
functions then the problem is transformed to one of
standard linear algebra.

• We expand our orbitals as linear combinations of atomic
orbital basis functions.

φi(r) =
∑
α

Cαiχα(r)

• The generalized Hartree-Fock equation becomes

〈φa|F̂ |φi〉 =
∑
αβ

C∗αaFαβCβi = (C†FC)ai = 0

• These equations must be solved under the orthonormality
constraint

C†SC = 1

• The solutions to the Roothaan-Hall equations satisfy both
requirements

FC = SCεεε

• This is a generalized matrix eigenvalue problem. We may
transform it to conventional matrix eigenvalue form by
transforming the AOs to an (arbitrary) orthonormal set
{φ̃i}.

φ̃i =
∑
α

Uαiχα U†SU = 1

(U†FU)(U−1C) = (U†SU)(U−1C)εεε

F̃C̃ = C̃εεε



The density matrix

• It is efficient to reformulate the HF equations in terms of
the AO basis, using the density matrix.

• In a RHF calculation the density matrix is defined as

Dαβ =
n∑
i

CαiCβi

• The Fock matrix is

〈α|F̂ |β〉 = hαβ +
∑
γδ

Dαβ(2gαβγδ − gαγβδ)

• The energy is evaluated through

E = 2
∑
αβ

Dαβhαβ +
∑
αβγδ

DαβDγδ(2gαβγδ − gαγβδ)

• It is also possible to optimize the density matrix directly.

Coulomb Correlation: Coupled Cluster Theory
• In the same way as for He and H2 we introduce Coulomb

correlation among the electrons by expanding ψ as a linear
combination of Slater determinants.

ψCI =
∑
pq···

Cpq··· det |pq · · · |

• The coefficients Cpq··· may be variationally minimized to
give the best wave function within a given orbital basis.

• Each Slater determinant may be viewed as generated from
the Hartree-Fock wave function by orbital replacements
(excitations).

• By including all excitations from occupied to virtual orbitals
we arrive at an accurate description of the system.

• The number of virtual excitations grows factorially with the
size of the system. The direct variational optimization of all
coefficients is impossible in practice.



• However, even in large systems, correlation predominantly
occurs through pairwise interactions between electrons.

• When the Hartree-Fock wave function is a good zeroth
order reference, the orbitals are only slightly modified by
the interactions.

• The perturbation of the orbitals is an excitation τ̂ab
ij from a

pair of occupied orbitals ij to a pair of virtual orbitals ab.
• Each pair excitation occurs with an amplitude tab

ij ,
representing the contribution (probability) of this excitation.

• In many electron systems such pair excitations occur not
only in isolation, but also in combination with one another
in all possible ways.

ψCCD =

[ ∏
aibj

(1 + tab
ij τ̂ab

ij )

]
det |ij · · · |

• This is the coupled cluster wave function in its simplest
form: the coupled cluster doubles (CCD) model.

• Due to the product form ψCCD is composed of all even
order virtual excitations.

ψCCD = ψHF +
∑
aibj

tab
ij τ̂ab

ij ψHF +
∑

aibjckdl

tab
ij tcd

kl τ̂
ab
ij τ̂ cd

kl ψHF + · · ·

• The coefficients for quadruple excitations are products of
double excitation amplitudes and so on.

• In reality the quadruple excitations are also affected by 3-
and 4-electron interactions that have not been included in
our pair model, but these contributions are small.

• We may refine our model by including amplitudes for
single, triple and higher excitations.

• The singles amplitudes represent the response of the HF
orbitals to the Coulomb correlation and triples represent
3-electron interactions etc.

• Each successive excitation level included reduces the error
by approximately a factor of 4.



• The quality of the correlation description does not only
depend on the level of excitation included, it is also
critically dependent on the orbital basis from which the
excitations are constructed.

• The convergence of coupled cluster methods as the orbital
basis set increases is slow due to the electron cusps.

• There is little point in including higher and higher
excitations unless the basis set is large enough to ensure
that the basis set errors are smaller or of similar magnitude
to errors due to neglecting higher excitations.

• In the following lectures we will discuss the coupled cluster
methods in detail, and we will address the issue of basis
set convergence through explicitly correlated methods.

• This discussion is most conveniently expressed in the
elegant language of second quantization.


