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I. MOLECULAR MECHANICS (MM): A CLASSICAL DESCRIPTION OF
MOLECULES

A. The conceptual and chemical basis

Chemical bonding is a genuinely quantum effect, which cannot be understood on the
grounds of classical physics. However, the solution of the Schrodinger equation is numerically
very expensive, and only small molecules can be treated quantum mechanically (up to ~100
atoms). To be able to treat larger molecules, it is necessary to find further approximations.

Two fundamental simplifications often made in quantum chemistry are the so called
Born-Oppenheimer approximation (BOA) and the classical treatment of the nuclei. BOA
requires the electron motion to be much faster than the motion of the nuclei (atoms), so
that the electrons follow instantaneously the motion of the nuclei (being somehow ‘fixed’

to the nuclei).!

The second approximation is the neglect of nuclear quantum effects, like
tunneling effects (hydrogen) or zero-point vibrations.

With these simplifications, we have the picture of N electrons moving in the electrostatic
potential of M nuclei. Then, we have to solve the Schrodinger equation for these N electrons,
which can be a formidable task. Or, vice versa, we have the M nuclei ‘sitting” within the
‘sea’ of N electrons! What is a chemical bond in such a case? What causes the attraction
between two nuclei? In many cases, we do not have a large electron delocalization, thus there
is nothing like a sea of electrons (which is the case in a metal). In organic molecules, we
have two electrons in every bonding orbital, and that is how covalent bonding is explained.
The main idea behind the empirical models of chemical bond is that the strength of, say,
a C-H bond mediated through the bonding orbitals is similar in all C—H bonds. In other
words, we have a localized/local phenomenon to deal with.

So, how can we model a covalent bond? Is it possible to use simple springs to approximate

a bond? Consider the molecules Hy, Oy or Nyo: If we model the interaction between two

atoms with a harmonic spring with the energy F(z) given as a function of the interatomic

I This means, that the electrons never leave those orbitals that have been ’assigned’ to them in the electronic
ground state. But there are cases, when they ’leave’ these ground state orbitals, e.g. in high energy

collisions of nuclei. The electrons are excited then, a process not treated within the BO framework.
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then there are two parameters k and zy. The values of these parameters may be derived
from spectroscopic measurements (bond length and vibrational frequency).?
In equilibrium, the force between the atoms
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F(z) = = k(x — xg) (1.2)

vanishes for x = x, thus x = ¢ is the equilibrium geometry.

A diatomic molecule is a one-dimensional system, and thus it is equivalent to one particle
with mass m connected to a spring with spring constant £.> The force on the particle is due
to Hooke’s law proportional to x — xg, and using Newton’s second law, we have

d%x

F=ma=m— = —k(x — x) (L.3)
This ordinary differential equation has a solution

a2
2(t) — 20 = ¢ - sin [\/gt + ¢y - cos [\/%t] (1.4)

The comparison with the known equation for harmonic motion

x(t) = c - sin (wt) (L.5)

provides the relation of the frequency with the force constant k and mass m:

w = L (L.6)

m
From another point of view, we obtain k directly from the second derivative of the energy:

b d*E(x)
- da?

(1.7)

This will hold in more complex molecules as well: the second derivatives of the energy with
respect to the atomic coordinates determine the frequencies of (harmonic) motion of the

atoms in a molecule.

2 In addition, there is also the information about the heat of formation. However, a harmonic spring does
not allow the bond to dissociate, therefore this information cannot be used until a “better” force field is

used, like a Morse potential.
3 The strict derivation introduces the reduced mass of the system.



Therefore, we can parametrize a simple force field from experiment, once we know the
equilibrium distances and the vibrational frequencies. Alternatively, we can obtain these
values from quantum-chemical calculations.

Does this mean that we can take a protein molecule and put springs between all the
atoms? If yes, does every bond need different values of k and xy, because every bond is
in a different chemical environment? If this is the case, we would not obtain any benefit.
The essence of empirical modeling of chemical bonding is that the number of necessary
parameters is much smaller than the number of bonds. In other words, we will use several
(not many) “types” of chemical bonds with assigned parameters to represent any bond in
our molecules.

In the other extreme, can we assign (for instance) each C-H bond the same k and x

value? It is not quite simple, but let us see:

1. Spectroscopy

Molecules consist of units/groups that have similar properties in every molecule. For
instance, every C-H has a length of » = 1.06-1.11 A and a vibrational frequency 7 ~

3100 ecm~!, whatever its environment in the molecule is.

2. Thermochemistry

Molecular enthalpies of formation are approximately additive, so that:
CHy, =4 CH
CyHg =26 C-H + C-C
This illustrates that the C—H potential looks like the Morse potential for every C-H unit
in any chemical environment. The depth of the minimum is adjusted to fit the enthalpies of

formation.

3. The concept of atom type

These points indicate that bonds between atoms can be modeled by universal potentials,

if one tries to identify atom types in similar chemical environments (groups):
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FIG. 1:

e Hybridization: clearly, an sp3 carbon with four single bonds differs from an sp2 carbon
with a double bond or even an sp carbon with a triple bond. So, we need different
potentials for the C—C, C=C and C=C bonds. Also, there will be various different
C atom types as well, like an aromatic carbon etc. Therefore, we introduce different
carbons and determine the parameters (k, xy) using some selected molecules which
are typical for this chemical environment. For carbon, we use CoHg, CoHy, CoHy and

benzene to determine the parameters (k, xg) for these four different carbons.

e A carbon atom bonded to an oxygen is electron deficient and this directly affects its
bonding to other atoms. If we have a situation like in O=CH-C..., the C-C bond
will be affected and it is thus desirable to introduce an additional C type — a carbonyl

carbon, which uses different force constants for the adjacent C—C bond.

Biomolecular force fields typically use about 20 different C, 10 N and 5 O and H atom types.

4. Localization of the wavefunction

The quantum mechanical basis of these findings is that the electron wave function is
localized. It can be localized in a bond, or localized on a fragment of a molecule. Such a
fragments may constitute of functional groups or larger pieces like amino acids, DNA bases,

sugars etc. The localization is crucial in at least two respects:

e Definition of the atom types: Electron delocalization can lead to different properties

of the atomic fragments, like the different carbons in the carbonyl group, benzene etc.



e Electrostatic interactions. In the force fields, atomic charges are defined — i.e. every
atom is assigned a point charge and interacts with other atoms according to Coulomb’s

law

Q1Q2
i (1.8)
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These charges have to be estimated carefully, and it is very helpful to use the rule of

group neutrality: Every functional group or molecular fragment has an integer charge.
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5. Bonded and non-bonded interactions

Then, there are two distinct types of interactions between atoms in an extended molecule:

e interactions mediated by, and resulting directly from the presence of a covalent bond
between the atoms. We usually put springs between the atoms and have to care
about bond and dihedral angles. With this treatment, we describe all the quantum-
mechanical phenomena like exchange and correlation using an effective potential be-

tween two atoms (like discussed above for a diatomic molecule).

e classical Coulomb interactions and van der Waals (vdW) forces between atoms, which
are both long-range. For bonded atoms, these interactions are already effectively
treated through the bonded parameters. These interactions are thus excluded between

atoms which are neighbors (up to the fourth neighbor).*

4 Usually, the non-bonded interaction between an atom and its third neighbor, so called 1-4 interaction, is

taken into account but scaled down by a multiplicative (“fudge”) factor.



B. Determination of the non-bonding parameters: Coulomb and vdW forces

The Coulomb interaction consists of three contributions: the nucleus—nucleus repulsion

Zi- 7

(1.9)

the nucleus—electron attraction,
Zi - Qj
—Z/ ot T| ZJ o (1.10)
(the electron charge density p(r) — >, Q; is approximated by the sum of atomic point
charges @Q);),
and the classical (Hartree) electron—electron interaction term is approximated as interaction

of point charges sitting on the atoms

/R -

If we define an effective atomic net charge as q¢; = —Q; + Z;, we can write the total Coulomb
energy as:
1 G
Egg=5Y 24 (1.12)
2 Py Rij

Thus, we have to determine the effective atomic charge for every atom type (or atom).®
This may be conveniently done by performing quantum-chemical calculations. Making use
of the localization of the wave function, we can calculate the typical molecular fragments
and try to determine the charges from there. These fragments are individual amino acid
residues for proteins and the bases (e.g. uracil in Fig. 2), sugars and phosphates for DNA.
In the uracil example, we can see that there are three different hydrogen atom types, one
nitrogen, one oxygen and two carbons. However, there are two issues associated with this
procedure:

First, atomic charges are difficult to define at all; there are several schemes to calculate
them and it might be difficult to judge which is the best. Nowadays, Mulliken charges are no

longer used because their drawbacks have become evident. A popular strategy is to use the

5 The term “atom type” is used with respect to bonded and vdW interaction. Usually, the atomic charges

must be determined for more specifically defined atoms.



FIG. 2:

so-called potential-derived charges. Here, one calculates the electrostatic potential (ESP) of
the molecule at its surface (see Fig. 3) and then fits the atomic charges in order to reproduce

ESP for a set of points one the surface. The fitting constitutes in minimizing the error R:
R=Y (¢ — o)) (L.13)

with ¢; being ESP induced by the system of point charges at the reference point i and ¢Y

being the ESP obtained previously in the quantum-chemical calculation.

FIG. 3:

Second, charges are calculated in the gas phase (i.e. for an isolated molecule), while the
electrostatic situation in an aqueous solution is different — molecules are more polar. As an

example, the water molecule has a dipole of about 1.8 D in the gas phase, while it is about



2.4 D in solution. To account for that, charges may be taken to be larger than the gas phase
values. A widely used strategy has been to use a small basis sets in the QM calculations, as
it is known that such calculations overestimate molecular dipole moments.

These force fields use static atomic charges and, therefore, neglect the effects of polariza-
tion and charge transfer between the atoms. Presently, polarizable force fields are becoming
more and more popular. Here, atomic polarizability «; is assigned to every atom 7. In a
linear response approach, an external electric field induces a dipole at the atom:

=% -E (1.14)
Of course, the external electric field is generated by all other atoms present in the system.
This phenomenon will be discussed later on.

A further important non-bonded contribution is the repulsion driven by Pauli exclu-
sion principle. In contrast to the classical Coulomb interaction, it is of a purely quantum-
mechanical origin. Two electrons with same spin try to avoid a large spatial overlap. A
typical example is the interaction of two neutral, closed-shell systems like two He atoms.® If
the electron densities of both He atoms start to overlap as in Fig. 4, the Pauli repulsion sets
in. This interaction is an exchange effect and decays exponentially with the spatial overlap.
Despite its pure quantum-mechanical character, we can model this effect conveniently by an

exponential term
Eex < exp [—a - Ry (I.15)

As we will see later, the the exponential decay is not a computationally efficient model, and

most empirical force fields use a R~ decay.

e

FIG. 4:

6 ...being the crudest approximation of two benzene molecules :-)



The Pauli repulsion relates to the motion of electrons with the same spin, on short
intermolecular distances. In addition, we also have a correlation of electrons irrespective of
their spin, which remains even on longer distances. Two electrons repel each other due to
the Coulomb interaction, trying to move apart from each other as far as possible. Consider
now two atomic fragments with no overlap as in Fig. 5. Due to the zero-point energy, no
quantum particle is ever at rest. If an electron in the neutral fragment A fluctuates in such
a way, that it creates a dipole in A, then this dipole will induce a dipole in the opposite
direction in the fragment B. Thus, the fluctuations of dipoles will be correlated due to the

Coulomb interaction. This correlated fluctuation of dipoles in the two fragments leads to an

O,

FIG. 5:

effective attractive interaction of the fragments, because of the opposite orientation of the
interacting dipoles.”

A simple model in Fig. 6 describes this qualitatively. Two systems of one negative and
one positive charge each are connected with a spring at a distance r. The negative and
positive charge in every pair can be separated by z; and 29, if some force acts on them.
The complex system has a force constant k and (reduced) mass m with w = \/k/m. The
separation of charges in small systems brings on dipole moments of p; = 21q and ps = 25q.

The Schrodinger equation for one oscillator

h? 9%y 1
e T P LTk =E [.16
2m 0% + 2 Y ¥ (1.16)
has a set of solutions given by
1
E = (V+§) - hw (L.17)

7 This effect is not described at the Hartree-Fock level of quantum mechanics, and is also missing in
density-functional theory. MP2 or CI would cover it.
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Now, let us couple the oscillators due to the dipole-dipole interaction:

211 12
Vir)=— P (1.18)

If we insert this interaction potential into the Schrodinger equation, we find
4
q*hw
Er)=—————— [.19
(") = = S ame i (119)
Now, the force on a point charge ¢ in an electric field of intensity F is

F=qF (1.20)

i.e. this force leads to a displacement z, F' = kz:

qF = k= (I.21)

Therefore, the induced dipole moment of such an oscillator in the electric field (F) is

ind = 4z = ¢“E /k (1.22)
At the same time, we have
Jhind = aF (1.23)
Therefore
a=q/k (I.24)
and we can write Eq. [.19 as
B(r) = -0 (1.25)

2(4meg)2k2r6



This is the well-known expression for the dispersive interaction, which is attractive with
a R~% dependence and dependent on the polarizabilities of the interaction partners.
The most common function which combines the Pauli repulsion and the dispersive inter-

action is the Lennard-Jones 12-6 potential

vor=ie((2)" - (2)) 20

which is shown in Fig. 7. The minimum lies at r,, = 2/%¢ and the well depth is —¢, and

o and ¢ are treated as empirical parameters. The slight issues with the exp-6 potential

0.8 — Lennard-Jones 12-6|
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FIG. 7: The Lennard-Jones potential with ¢ = 0.4 and ¢ = 2, and a similar exp-6 potential.

are shown in Fig. 7 as well. It might be difficult to find appropriate parameters, which
would render the vdW minimum correctly, and the function becomes negative for small 7.
However, the main reason for the exp-6 potential not to be used (except if vitally needed)®
is that the it is much more computationally intensive to evaluate the exponential function
than RS,

To find the vdW parameters for heteronuclear interactions, several “mixing rules” have

been proposed, the simplest being:

OAA T OBB
2

EAB = V/EAA " €BB (1.27)

OAB =

To find a good set of non-bonded parameters is a challenging task, and force fields are

constantly being improved, meaning that new sets of parameters are proposed. A crucial

8 which may be the case in the studies of phase transitions like freezing



test and calibration of a force field is the density and the heat of vaporisation of organic
liquids, since these properites depend critically on the magnitude of non-bonded parameters

— the charges and vdW parameters.

C. Hydrogen Bonding

Early force fields contained special potentials to describe hydrogen bonding. Hydrogen
bond is the attractive interaction between a hydrogen atom and an electronegative atom like
oxygen or nitrogen. The hydrogen must be covalently bonded to another electronegative
atom, so that this covalent bond is polarized and the hydrogen bears a partial positive
charge. A typical example is the hydrogen bond between two water molecules in Fig. 8
left. Typical binding energies are around 20 kJ/mol but may reach higher values if the
binding partners are strongly polarized or even charged, or if there are several hydrogen

bonds between them, like in the GC base pair in DNA, see Fig. 8 right.
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FIG. 8: Water dimer (left) and the guanine:cytosine nucleobase pair (right).

Clearly, Coulomb interaction is the dominant contribution to the hydrogen bond, but
vdW interaction can become important also, especially in weakly bound systems. It has
been shown that they become crucial especially to describe the angular dependence of the
interaction energy in complexes like HyCO. .. Hy0O and similar.

Thus, force fields have everything in place to describe these phenomena (Coulomb and
vdW terms), and most modern force fields do not require a special treatment for this bonding
type. However, a third contribution, the charge transfer (Fig. 9), is not captured by force

fields at all. It may be included in the other terms in an effective way.
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FIG. 9: Charge transfer between the charge donor (Y) and acceptor(X-H).

D. Determination of the bonded parameters: harmonic springs
1. Bonds

A bond dissociation curve typically looks like that in Fig. 1, and is well reproduced by

the Morse potential with the functional form
E(r) = D (1 —exp [—a(r — r)])” (1.28)

In principle, the Morse potential allows for a quite good representation of the potential, in
a broad range of distances. However, it is computationally quite inefficient, because of the
presence of the exponential, and the Morse potential is rarely used in molecular mechanics
studies.

A way to approximate virtually any function is to apply the Taylor expansion

dE 1d%E
E(T’) = E(To) + E(To) . (7" - ’l“o) + ém(’ro) . (7’ — 7"0)2 + ... (129)
Most force fields use a harmonic approximation, i.e. the Taylor expansion cut after the

second-order term. E(rg) is a constant which we set to zero, and the first derivative 9 (ro)

.
vanishes if the function has a minimum in ry. Therefore, with the definition of the force

constant £ we have, in the second order:

B(r) = Sk(r — 10 (1.30)

We can immediately see in Fig. 10 that the approximation of the true potential with a

quadratic function is quite crude and holds only in a quite narrow interval of distances



around the minimum. Importantly, the vibrations of covalent bonds exhibit quite a small
magnitude (of several tenths of angstrom) and so we actually never need to describe the
potential beyond this narrow interval.” The application of harmonic approximation is then
justified. To parametrize such a force field, we need two parameters per bond: the force

constant k£ and the equilibrium distance rq.
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FIG. 10: Comparison of the harmonic and quartic functions with the Morse potential

To be able to compute accurate vibration frequencies, terms up to fourth order can be
important to describe the curvature of the potential energy dependence; Fig. 10 compares
the Morse potential with the harmonic and fourth-order functions. Also, the quartic function

approximates the Morse potential a wider interval of distances.

2. Angles

As for the bonds, we apply a harmonic approximation for the angle deformation and get

the potential
1 2
Fhena(V) = 5]4319(19 — ) (1.31)

Again, we can obtain the parameters from experiment. For instance, let us consider a

R
o N

g

#

9 of course, if we do not aim at studying chemical reactions, i.e. having covalent bonds created of broken



water molecule, which has an equilibrium bond angle of ¥y = 104° and a bending vibration

frequency of about 1700 cm™*.

8. Dihedrals

Dihedral angles describe the rotation around covalent bonds. Four atoms are needed to

define this angle (w):

(Clearly, the dependence of potential energy on the dihedral angle will be described with

a periodic function, and a usual way to express this is a sum of several cosine functions:
Bw)= > Vycos[n w—] (1.32)

with Vj, being the height of the torsional barrier, n giving the periodicity (n = 1: 360°,
n = 2: 180°, n = 3: 120°) and phase offsets ~,.

Now, consider the C—C single and the C=C double bonds as examples. The single bond
has a periodicity of 120°, i.e. we have three minima for one full rotation of 360°, and the

potential energy is described as

T T T T T T T

— single bond
— double bond

0 90 180 270 360

Ec_c(w) =V -cos3w (1.33)



The C=C double bond has a 180°-periodicity and thus only two minima for the full

rotation. The energy is given by

FEc—c(w) =V - cos [2w — 90°] (1.34)

E. The complete equation

Adding up all contributions, the total energy of a typical biomolecular force field reads

1 1 1
BE(RY) = B E ki(n—r?)2+§ g kf(ﬁj—ﬁg)2+§ E Vi, - cos [nw — v,
i j n

N N
+ 3% {4ey o5 \" (0w’ L ey (1.35)
— L Y\ \ry T dmeg i .
Jj=i+1

F. Exercises

1. Show for the Lennard-Jones potential (Eq. 1.26) that the minimum is at r,, = 2'/5¢
and the well depth is —e.

2. Calculate the first and second derivative of the general force field (Eq. 1.35). Only the

terms dependent on r; and r;; are required.



II. GEOMETRY OPTIMIZATION AND NORMAL MODES OF VIBRATION

Consider again a diatomic molecule. The total force-field energy
1 2
E(z) = ék(:v — ) (I1.1)

is positive if the distance between the atoms x does not equal the reference bond length x.

Consider the case, that we obtain the dimer in a geometry with the bond distance of
1 # x9. Now, how can we determine the optimal geometry in that case, i.e. the geometry
(distance) with the lowest energy? We calculate the force F' acting upon both atoms, as the

negative of the gradient g of energy:

F(z) = —g(x) = —agf) — k(z — 30) (11.2)

To approach towards the minimum, we calculate the force at the actual distance x;

If we move the atoms in direction of the force until the force is zero, we will reach a stationary
point.

Once there, we have to check if it is indeed a minimum (and not a saddle point, for
instance). We can do this by evaluating the second derivative

_ 0*E(x)

b= (11.4)

If this is positive (corresponding to a real vibrational frequency w = \/k:/—m), then we are
in a minimum. Otherwise, the frequency is imaginary and the coordinates correspond to a
saddle point on the potential energy surface (which cannot happen with just one harmonic
potential). The second derivative of energy describes the curvature of the potential energy
function and is directly related to the vibrational frequency.
This procedure is what we call energy minimization or geometry optimization.
Generally, our energy function depends on 3N atomic coordinates (z, y, z for each of N

atoms). It is convenient to write all the coordinates in one vector

7= (l’l,yl,Zl,ZEg,...ZN) (II5>



In three dimensions (corresponding to one atom), the gradient reads'®

OF OFE OF
i=VE[) = | —,=—,=— I1.6
i=vE0 = (G50 5 ) (1)
For N atoms, g and F are 3N-dimensional vectors:
OE OFE OE OF oF
jg=—— =—,—,... —, (I1.7)
Oxy Oy 0z Oxo Ozn
The unit vector in the direction of the gradient is given by
. g
191

A. Steepest-descent minimization (SD)

Within the method of steepest descent, the optimizer moves iteratively — in steps h along

the direction of the force
h=a-& (I1.9)

The critical point here is the choice of the step size a. If the step is too long, we follow the
gradient down the potential though but may miss the minimum along the gradient and go
up the valley on the opposite side. If the step is too short, we may need to perform too

many steps, which in turn means too many (costly) evaluations of energy and forces.

FIG. 11: Steepest descent minimization

One way to overcome this problem is to perform a line search along the direction €, and

find a minimum on this line. In other words, we are looking for a value of oy such that ryq

10 ysing nabla — the formal vector of partial derivatives V = (%, 8%7 8%)
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FIG. 12: Line search
is the minimum along the search direction ey:
Tra1 = Tk + Qg€ (Hl())

The interesting and important point is that two successive search directions (steps) are

orthogonal to each other:
hg—1-hi =0 (I1.11)

A problem may arise if the energy function forms a narrow valley. In such a case, the second
next search direction will be similar. Therefore, an efficient strategy attempts to avoid this

double work and looks for search directions that are orthogonal to all previous ones.

FIG. 13: Problem of SD in a narrow valley

B. Conjugate gradient minimization

Consider the Taylor series of a 3/N-dimensional function up to the second order:

. . or 1 0’E
E(f) = E(0) + Z %(0) i+ = Z -(0) - it
i ' ij

AT (IL.12)

|

—c—b-7+



with the constants c, band A given as

E(0) b= —VE(5) A aq;(j (11.13)
c=FE(0 = — 0 i = 0 :
’ ’ 7 Ox;0x;
If we express the derivative of F in a point 7, we obtain
VE() =A-7—b (11.14)

To minimize the function £ now means to find the point 7,,;, where the derivative vanishes:

V E(Tmin) = 0. This task corresponds to the solution of this set of linear equations:

A-7F=b (I1.15)

-,

To do this, we could calculate the first (b) and second (A — Hessian) energy derivative and
solve the set of equations.

With that, we would directly obtain the minimum 77,;,, but

e To evaluate the second derivatives is computationally very expensive. If possible, we
try to avoid such a calculation whenever we can (to calculate the gradient, we need

3N derivatives, while for the Hessian we need (3N)?).

e Usually, the potentials of interest are not simple harmonic potentials, i.e. we only
make a local harmonic approximation. Thus, the obtained solution 7},;, is not the
minimum we are looking for, but only a step towards the true minimum. Practically,
we would have to perform such calculations iteratively, which would become very

time-consuming.

Therefore, we look for methods which use information in the form of gradients only.
As we have seen on the example of the SD method, successive gradients can have similar
directions, which leads to a lot of double work. The conjugate gradient method constructs
successive search directions, which are conjugate to each other in a certain way.

Practically, we perform the first step h along the gradient §:

The second step should be ‘conjugate’ to the first step, i.e. it should not go in the same

direction.



Now, how does the gradient of E change if we move along a certain direction hi.? Let us

consider two successive steps k and k£ + 1. We have:

Ge = A7, —b
Ger1 = AT —b (IL.17)
§k+1 - gk = A. (FkJrl - Fk)

This means that going along the search direction hi = —3r, we obtain the change of the
gradient Axg = g1 — Gr- This is the effect of the search direction —gj. Now, when moving
along the next search direction ﬁk+1, we do not want to lose the fruit of the work done so far,
i.e. we wish to keep the change of gradient that has already been made (A.g). Therefore,
the gradient shall remain orthogonal'* to hi. This can be achieved if the change of gradient

along szﬂ is orthogonal to R

- Aga§ = 0
hi (Gerz = Gre1) = i A (Froa — Trp1) = by A+ gy = 0 (11.18)
This condition is a generalization of the concept of orthogonality, and the two vectors ﬁkﬂ
and ﬁk are denoted as conjugate (with respect to A). They are orthogonal if the matrix A
is a unit matrix.

Now, we want to perform sequential steps as with the line search algorithm,

Thk+1 = Tk — O - Gk

A - (Fk—i-l — Fk) = —a,-A- gk - gk—i—l - gk (1119)

If we choose oy such that 7,1 is the minimum along the search direction g, we know that
the two successive gradients are orthogonal. We can multiply the last equation with g, to
get:
ap = - Ik (I1.20)
Gk - A - Gk
This equation assures the orthogonality of g, and g1, so that every search direction is

orthogonal to the previous one, and determines the step size. For that, we need the gradient

and the Hessian.

1 or perpendicular in our simple 2D drawings



However, the calculation of the Hessian is often too costly, and the step should thus
be determined in another way. Several algorithms to do so have been developed, and we
will briefly describe the Fletcher-Reeves method here: The new search direction at 71 is

calculated as (without proof)

his1 = —Gk+1+ Ve - hi, (I1.21)
with
p = Sl e (I1.22)
9k~ Gk
assuring
Ge -G = 0
G-l =0 (11.23)
hi-A-h =0

FIG. 14: Conjugate gradients

e This has to be compared with the steepest descent method. In SD, the search directions
—0Jr+1 and —gy are generally not orthogonal to each other, which can lead to the case
that successive steps spoil the efforts of each other. The conjugate-gradient directions
ﬁk are not constructed to be orthogonal, either; however, it is their property of being

conjugate (EkA . l_il = 0) that increases the efficiency of the minimization significantly.

e In principle, CG determines the minimum of a N-dimensional quadratic potential in
N steps. Every vector in an N-dimensional space can be constructed from N basis

vectors. In many cases, these are chosen to be orthogonal. It can be shown, that the



vectors ﬁk form a linearly independent set of vectors, and so they represent an optimal
set of search directions to find the minimum in N steps. The vector determining the

path from the initial point 77 to the minimum 7 can then be written as

P =S el (I1.24)
k

C. Hessian-update based methods: Newton—Raphson and quasi-Newton—Raphson

Now, consider the vector

where 7 is the global minimum and 7} an arbitrary starting point. Since the gradient

vanishes in the minimum, we find from

A-7P=b (11.26)
that
F=A"D
="+ A D (11.27)

so that we are able to find the minimum of a quadratic potential in one step, simply by
inverting the Hessian A. This is a very favorable property, because in CG we would have
needed around N steps (N — dimensionality of the problem). The Hessian contains the in-
formation about the curvature of the function, with large curvature giving large eigenvalues.
Therefore, the inverse of the Hessian leads to large steps in regions of low curvature and vice
versa This property will speed up the convergence for shallow potentials, where it would be
very slow just to follow the gradient.

A trivial example is the parabola f(x) = z?. For this function, the so called Newton—

Raphson (NR) method as described in Eq. I1.27 gives:
1
0:7“1—5'2'7“1 (II28>

(with f”(r) = 2 and f'(r) = 2r). Compare this with a flat potential like f(r) = 0.1-r% The
inverse of the second derivative f”(r) = 0.2 is [f"(z)]~! = 5, giving a large step size.

Practically, there are some issues:



e to evaluate the Hessian and to invert it (an O(N3)-operation) can be very costly, co

that the CG method becomes computationally cheaper, in particular if

e the potential is not harmonic. Then, NR may even fail (converge to a saddle point,

proceed in a wrong direction etc.) and it may not be the method of choice.

Therefore, one usually starts the optimization (when forces are large) with SD and CG, and
NR is invoked only later — close to the minimum, where the harmonic approximation works
better.

Very efficient are so-called Hessian-update methods, where the inverse Hessian is not

calculated, but rather updated during the optimization.
Tor =7 — A Ga (I1.29)

One starts with A;" = I (unit matrix) and the matrix is ‘updated’ in every step, so that it
is identical to the inverse Hessian for large k. This means that in the beginning, one follows
the gradient, and the information about the curvature is collected along the way.

All optimization techniques require a criterion to stop the procedure. Common practice
is to stop if the gradient and the change of energy between two steps become small (smaller

than a preset threshold).

D. Harmonic approximation of molecular vibrations: the normal modes

The displacement from equilibrium of a harmonic oscillator r(¢) is given by the solution

of the ordinary differential equation
m-i=—k-r (I1.30)

with k£ being the second derivative of the potential with respect to the displacement r. If

we insert r(t) = A - sin(wt), we immediately obtain
—m-w? = —k (I1.31)

and the vibrational frequency w = \/k/m.
If we think of large molecules like proteins with N atoms, the problem becomes quite

complicated. Every atom interacts with each other, so we have to deal with N? interactions,



which are usually not harmonic (Coulomb and vdW interactions, many-body interactions,
although the bonded terms are harmonic).

In the harmonic approximation, we take the force-field energy 1.35 and apply the Taylor
approximation around the equlibrium positions of the atoms, with r; being the deviations

from the equilibrium (the first derivative vanishes at equilibrium):

E(7) :E(FO)+§ZW-TZ~Q (I1.32)
i.j
With
kij = ijg“j (I1.33)
and setting F(r) = 0 we have
B(f) = %i I (IL.34)
iJ

Note that the k;; introduced here are different form the force constants in the force field!
The force on atom 7 is now the (negative of the) derivative of the energy with respect to

the atomic coordinate 7r;:

OF al
F = 3 - _ ; kij - (I1.35)
Looking at atom ¢, we have
N
J

Since we have E/, we know how to calculate the second derivatives, once we have located the
minimum. The movement of atom ¢ is now coupled to all other atoms, and the equations we
have to solve become quite complicated. In case of a diagonal matrix k;; = k;;0,;, we would

have
m; - 7 = ki 1y (I1.37)
for which we know the solution

ri(t) = a; - sinjwt] (I1.38)



where we have a system of uncoupled oscillators. We can use this as an ansatz to solve the

system of coupled oscillators, to obtain
N
m; - w2 sy = — Z kij s Ay (1139)
J

The vector @ = (ay, as . ..asy) gives the amplitude of the motion, i.e. determines how much
an atom is involved in the motion. We define A = w? and the (diagonal) mass matrix

M,; = m;. With that, we can write:

AM-a=k-a (I1.40)
Multiplying from the left with M~!, we get

Na=M"'-k-a (I1.41)

This is an eigenvalue problem for the matrix M~! - k, which we know how to solve. The
only problem is that this matrix is not symmetric, which makes the numerical solution more
difficult. Therefore, we look how to get an eigenvalue problem for a symmetric matrix.

This can be done if we define
b=M"?.a ie. a=M1"2.p (11.42)
and get instead of I1.40 this problem:

A-M2.p=k-M 2.} (11.43)

1/2

Now, we multiply from the left with M~/ and obtain

M2 N MY2. 0 = M Y2 k- M Y2}

K-b (I1.44)

Sl
I

\ -
with a symmetric matrix k given as

(I1.45)

Now, we can solve a standard eigenvalue problem

(E—A.I).Bzo (11.46)



to get the eigenvalues )\, and eigenvectors b,. The N x N matrix k has N eigenvalues ), and
eigenvectors gy, which correspond to the normal modes of the system. These represent the
independent modes of motion of the molecule. Every eigenvector gy contains the amplitudes
of every atom in the system (in the directions z, y and z), contributing to the particular
normal mode v: b, = (b, b5, ..b%).

For example, think of the three modes of vibration of a water molecule:

N T

Example:

Consider a fictitious linear triatomic molecule, with two equal bond lengths and force
constants, atom masses my, ms and ms = my, and harmonic springs only between atoms
1-2 and 2-3. The potential energy F then reads

1 1
E = §]€ . (33'1 — 372)2 + 5]{ . (iIZ'Q — .1'3>2 (1147)

with x; being the displacements from the equilibrium positions.

We have the Hessian

E —k 0
k=| -k 2k —k (I1.48)
0 —k k
the mass matrix
mq 0 0
M=| 0 my 0O (I1.49)
0 0 ma
and the mass-weighted Hessian
k o k 0
mi mims
k=] — £ ok __k (I1.50)
mi1msa ma mima2
k k.

3
3
3



The solution of the eigenproblem leads to three normal modes:

A= k : blz—bg,bgzo
A= 0: b1:b3, b2:\/m2/m1-b1 (1151)
A= k% blzbg, b2:—2\/m1/m2-b1

The first mode describes a motion with the central atom at rest, and m; and ms vibrat-

g

ing with opposite amplitudes — symmetric stretch. The second mode corresponds to pure

translation of the whole molecule along the x axis. Since a; = a3 = we find that as =

b
vmi’
a1. In the third mode, the central atom moves in the opposite direction to the outer atoms

— asymmetric stretch.

E. Exercises

1. Consider the function f(z,y) = 2* + 2y*. Calculate the gradient in the point (2,2)
and the Hessian in (0,0). Would you reach the minimum when moving along that
gradient? What are the eigenvalues of the Hessian in (0,0)7 Start in the point (0,1)

and move along the gradient with the step size of 1. Where do you arrive at?

2. Starting in the point (9,9), a line search in the first step finds the point (4,—1). Show
that the new search direction constructed in this point with CG directly reaches (0,0).

3. Show that you arrive in the minimum in one step if you use the Newton-Raphson

method.

4. Consider the function f(x,y) = z*+4x?y?—22*+2y2. Plot this function and determine
the eigenvalues of the Hessian in the minimum (1,0) and in the saddle point (0,0).

What are the eigenvectors?

5. Derive the Hessian of the artificial linear triatomic system (Eq. I1.50).



IIT. MOLECULAR DYNAMICS SIMULATIONS

Consider a chemical reaction in solution. The molecules of solute are surrounded by many
water molecules, which fluctuate and thereby assume different hydrogen bonding interac-
tions with the solute. The different orientations of water molecules induce different dipole

moments on the solute. As a result
e the energy of the system will fluctuate a lot;

e since there are a multitude of local minima close in energy, the search for a global

minimum will become extremely difficult if not meaningless;

e cven if a global minimum is found, the product state may have a very different
global minimum than the reactant state with respect to the conformation of the water

molecules. In this case, we do not know how to compare the energies at all!

The (micro)state of a system is completely determined, if we know the positions 7;
and the momenta p; of all the particles. We call the 6 N-dimensional space spanned by the
coordinates and the momenta the phase space, {7}, p;}.

A trajectory in the phase space is the sequence of points {7;(¢), p;(¢)} passed by during
the dynamics of the system.

Example:

Consider the simple harmonic oscillator. We can plot the time dependence of the coordinate
r(t) = a - cos [wt] (IIL.1)

as well as the time dependence of the velocity
v(t) = —aw - sin [wi] (TI1.2)

On the other hand, we can also plot the velocities versus the coordinates in the 2-dimensional

phase space, and we see easily that the trajectory in the phase space is elliptic:

2 2
(ﬂﬁ>+(ﬂﬁ):1 (I11.3)
a a-w
The total energy of the harmonic oscillator is

1
E:T+V:§m&¥ (I11.4)
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Therefore, different values of a and w correspond to different energies. The trajectories in
phase space never cross for such so-called conservative systems (systems conserving the
total energy). If we have friction or some other damping, the oscillator is losing energy
(non-conservative system) and the motion will look like spirals ending in the origin. Here,
different trajectories may cross.

Now, let us return to the molecule in solution. It does not make much sense to look at
a single structure; rather, we may wish to average the property of interest over all available
structures. For example, we follow the trajectory in phase space for some time and evaluate
the energy for many snapshots {7;(tx), pi(tx)} along the trajectory. So, we obtain values of

energy Fj. in time instants t (k = 1,..., M) and calculate the average:

(E) = % > E (I11.5)

We do this for the product and for the reactant, obtain average energies for both states,
and thus the energy difference. In principle, this is a very good idea, but there are a few

issues:

e How can we assure that we have enough points (snapshots) to represent all possible

(or at least relevant) conformations of the molecular system?

e How do we obtain the trajectory? — perform MD! Then, how to consider the tem-

perature?

e Suppose we know the structure of the reactant, then how do we get the structure of
the product and, if desired, the whole reaction path? This is a difficult problem and

we will have to spent some time on that.

e What about entropy? Does the average of energy provide sufficient information? This

is another difficulty, so we will have to look deeper into thermodynamics and statistics.



Here, we are at the core of biomolecular simulations: It is easy to understand the total
energy of the force field, and how geometry optimization works. The main issue is to make
proper use of the energy function to get the thermodynamic properties right. Biomolecular
simulations are all about thermodynamics, in possible contrast to quantum chemistry, where
people look at small molecules with quite simple structures and with a focus just on total
energies. At the moment, we will concentrate on the former two points. The latter two
points will be discussed in next chapters.

If we have a trajectory, we can calculate so-called time averages for the properties of
interest, like structural properties or velocities. For any property A(t), this works the same

way as for energy, so that we may generalize the Eq. I1L.5:

(A1), = — / ’ A(t) dt (I1L6)

Tt —t to

On the other hand, an experimental sample contains a huge number of molecules. This
number is so large that we can assume all relevant conformations of molecule and solvent
to be present. Think of a large number of harmonic oscillators, then for every point in the
phase space 77, p;, there will be for every point (on the ellipse) an oscillator, which is at that
point. Such a collection of systems is called an ensemble.

Now, let us count how many molecules (oscillators) in the ensemble are found in a phase-
space point 7, p; as well as in all the other points. Doing this, we obtain the phase space
density, i.e. the number of realizations of each point in the phase space (per a unit of

volume):

(7, D) (111.7)

If we integrate p over the entire phase space, we obtain the total number of systems (oscil-

lators or molecules):

Z = / p(F, p) dF djp (IIL.8)

We can use this phase space density to calculate the ensemble average:

1

(4), = / A - p(7,5) dF dp (I11.9)

Experimentally, we always measure ensemble averages; however, in a simulation, we

always have a single system for which we calculate time averages. To be able to compare



both, we always assume that the systems we study are ergodic. This means that the system
passes through all points of the phase space constituting the real ensemble during the MD,
provided the simulation is long enough. If the system is indeed ergodic, then these averages

are equal:
(II1.10)

We leave the statistics for a moment and have a look, how we can get the trajectories in

computer simulations.

A. Integration of the equations of motion

The total energy £ = T + V is often termed Hamilton function H, or Hamiltonian in
quantum mechanics. The Hamilton formalism is a practical way to derive equations of

motion, once we know the total energy:

OH 0OH
= = — I11.11
We cannot prove these equations here, but give an example (momentum p = m - v):
1p? 1
H=-——+-k
om 2"
OH p
T G I11.12
= T m (I1.12)
OH
) — —— — —k’ .
b or "

which, if put together (p = m-# from the eqn for 7), give the well-known equation of motion
of the harmonic oscillator. These are ordinary differential equations (ODE) of 1st and
2nd order.

A 1st-order differential equation may look like e.g.
t=—-k-x (IT1.13)

which has the solution z(t) = A - exp [~k - t]. Examples of phenomena in nature following
such an exponential law are radioactive decay or the dynamics of populations.

More generally, we can write these ODEs as

i = f(x,1) (I11.14)



A 2nd-order ODE then follows as

&= f(x,a,t) (II1.15)
An example is the equation of motion of a harmonic oscillator & = —% - x, or, when we
introduce damping
P=—-(1t—— =z (I11.16)
m

The damping is assumed to be proportional to velocity, which is very often the case.

We can reduce the 2nd-order ODE to two 1st-order ODEs by introducing v:

T =

. k

0V =—-Cv——-x (II1.17)
m

Now, we have to solve these ODEs numerically. There are several methods available, which

we will briefly discuss.

B. The Euler method

To solve a 1st-order ODE
7= f(rt) (IT1.18)
we proceed by a Taylor expansion (At =t — tg):
r(t) = r(to) + 7(to) - At + %f(to) AP+ (I11.19)

The Euler approximation is a first-order approximation, so that we neglect the second

and higher orders:
r(t) = r(to) +7(to) - At (I11.20)

We start the numerical integration at time tq, take a time step At and get the value of r

and v in the time t = ¢y + At. For our MD simulation, we have

r(to + At) = r(to) +v(tg) - At

U(to + At) = U(to) + a(to) AN (111.21)

1 0H F
W) = oo = m



where H is the Hamilton function. Instead, we can use the potential energy V only, and the
derivative of V' is the force upon the atom.

To start the MD, we have to specify the initial conditions — the positions ry and the
velocities vy, and calculate the force at the positions xy to get the accelerations ag. Then,
we can use the Euler equations to get the positions and velocities at the time ¢y + At.

This means, to obtain a trajectory over a time interval 7', we have to evaluate the forces
on all atoms M = T'/At times, i.e. to perform M steps. Therefore, the computational cost
of the calculation of forces determines how many steps we can afford to make.

The length of the time step is a crucial parameter in the simulation. There is a numerical

and a chemical constraint on the step size:

e Numerical: Since we neglect the contributions in A#? and higher orders, we introduce
an error in the order of At? (O(At?)). A possibility is to make the step very short, so
that the error is small. But then, we need to perform too many steps to simulate a
certain time T'. on the other hand, if we make the step too long, we introduce an error
in the integration. We will notice this error in the total energy: £ = T 4 V should be
conserved, and if we monitor the total energy during the MD we can see, how good

our integration is.

e Chemical: The fastest motion in biological systems is the movement of hydrogen
atoms, with the period of around 10 fs. A rule of thumb recommends the step size
to be at least an order of magnitude smaller than the period of the fastest motion.

Practically, this leads to a step size of 1 fs.

The step size (of typically 1 or several fs) is the fundamental time unit in MD. This means,
we need 1 million calculations of energy and forces to get a trajectory in a total length of
1 ns. For large systems, multi-nanoseconds simulations can be routinely done, and even

microsecond regime may be reached for smaller ones.

C. The Verlet method

The numerical error of the Euler method is too large to allow for time steps of 1 fs.
Therefore, methods with errors in O(At?) have to be used. A popular one is the Verlet

method. Here, we make a virtual step in positive time and in ‘negative’ time, and expand



up to second order:
1
r(t+At) = r(t) +7(t) - At + 57’*(15) - At?
r(t — At) = r(t) —7(t) - At + %i*(t) - At (I11.22)

We may add both equations to eliminate the velocity r:

r(t+At) = 2-r(t) —r(t — At) +7#(t)At?

P(t) = a(t) = _ia_v(t) _ _F(t)

m Or m

(111.23)

This equation seems to be a little strange, as it requires not only the positions r(t) and
the accelerations a(t), but in addition the positions one step back r(t — At)! This may look
like a problem, because at the start of a MD, we know only r(tg), v(to) (and a(ty) via forces)
but not r(ty — At). This would mean that Verlet could not be started. We have to use the

initial velocities to calculate the positions an imaginary step back r(to — At) to start Verlet:
’I“(t() — At) = T(t()) — U(to) - At (11124)

The algorithm does not contain velocities explicitly; if these are of interest, they may be

obtained as

#(t) = o(t) = " Atz) ._A';(t — A (IT1.25)

This form of the algorithm is called the Verlet normal form.
Several equivalent variations of the algorithm have been developed, like the velocity

Verlet.!? Here are new positions calculated first
1
r(t+ At) = r(t) +v(t) - At + 5a(t) At (I11.26)

followed by the evaluation of forces (and thus accelerations) in the new positions. New

velocities are then obtained as
1
v(t+ At) = o(t) + 3 (a(t) + a(t + At)) - At (I11.27)

which are used in the next calculation of positions r.

12 Another often used variant is the leap-frog.



Here, MD can be started with the knowledge of zy and vg; however, in every next step,
new positions r(¢ + At) must be calculated first so that accelerations may be updated in
order to obtain v(t + At). Although both mentioned forms of the Verlet algorithm are

equivalent, the velocity Verlet exhibits better numerical precision.?

D. More advanced methods

The Verlet method (with the error of O(At?)) is a very approximative one though, but
it is routinely used in MD simulations for its favorable performance due to the necessity
to evaluate only second derivatives of positions (accelerations). Plenty of more accurate
methods to solve ODEs have been developed, and we will briefly mention a few of them.

A straightforward way to improve the quality of integrator would be to involve several
extra terms from the Taylor expansion, i.e. to cut the expansion at some further point.

The classical Runge-Kutta method evaluates the first derivative in several points (selected
with a special algorithm, k;) in every step, and the function r is the integrated using a

weighted average of these values:
1
Tnyl = Tn + EAt (r(k1) + 27 (ko) + 2 - 7(k3) + 7(ky)) (IT1.28)

This reduces the error to O(At®) (fourth-order method).

The Gear’s predictor—corrector family of methods provides solutions correct to an order
of choice. Here, new position etc. are calculated (‘predicted’) from the Taylor expansion as
usually. Then, the forces are calculated in the new positions to give accelerations. These
are then used to ‘correct’ the new positions, and new positions are then calculated finally.
This method is rarely used due to the considerable computational requirements, although it
may provide quite accurate solutions of equations of motion as well as make a longer time

step possible.

13 The numerical problem of normal Verlet is that it adds a small but important term 7#(ty)At? to a large

term calculated as a difference 2r(t) — r(t — At).



E. Exercises

1. Derive the equations of motion for the linear triatomic system with Hamiltonian
1g 1 1
H = 5 Zzlm,vf + §k(x1 —x9)% + 5]{3(1'2 — x3)? (I11.29)

2. Derive the equations of motion for the particle i (r; and p;) using the Hamilton for-

malism for
H:lzm-v%rlz‘/- (I11.30)
2 - 179 2 - ) °

Vi; is given by the Lennard-Jones potential discussed in Chapter 1. These are the
equations we have to solve when doing real MD for a system of uncharged particles

without covalent bonds, like argon atoms.



IV. THERMODYNAMIC ENSEMBLES

A system of classical particles interacting with a potential V' is a deterministic system.
Knowing the initial conditions, which consist of the positions and velocities of all particles
at the initial time, we can calculate the trajectory of the system, i.e. the positions r(¢) and
velocities v(t) at all future times t. We can have analytic solutions, as in the case of the

harmonic oscillator, where we have the trajectories in a closed form:
x(t) = o - cos|wt] v(t) = —vp - sinfwt] (IV.1)

or, if the system becomes too complicated, we have to compute the trajectories numerically,
for instance using the Verlet method.

Note that so-called chaotic systems are also strictly deterministic. For completely spec-
ified initial conditions, the system is perfectly predictable. The point here is that two
trajectories which are initially close in phase space, may depart exponentially from each
other, while they would stay close in non-chaotic systems (e.g. harmonic oscillator). We
say that the solution of the underlying differential equations is unstable. This may happen

already for seemingly simple systems like a double pendulum!
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FIG. 15: For a ‘chaotic’ system, two initially close trajectories depart exponentially. Therefore,
small differences in the initial conditions may lead to very different behavior of the system, although

being completely deterministic.

A motion becomes stochastic, if we do not have the information about all degrees of
freedom, like for a dust particle moving in an erratic fashion. If we could keep track about
the movements of all air molecules, the particle motion would be completely deterministic
for us. We have to describe systems using statistical mechanics, if we cannot keep track

of all degrees of freedom.



We are now interested to find simulation techniques, where we can control the tempera-
ture. The temperature is a crucial parameter, which determines if a certain part of the phase
space is to be reached during the MD. The phase space will be sampled differently at high
temperatures than at low ones, and different ensembles will be generated. In particular, we

have to find a way to model the system, that we simulate the right phase space density.

E/\ Epot
S

-y

FIG. 16: A high energy E = Fyin + Epor allows to sample more different parts of the phase space.

The difference I/ — Eo corresponds to the kinetic energy Fiyiy.

A. The microcanonical (NVE) ensemble: an isolated system

A system is called isolated if it exchanges neither energy (in the form of heat or work)
nor matter (particles) with the environment. In this case, the total energy of the system is

constant and given by the sum of the kinetic energy Ei, and the potential energy Eq
E = Eyin + Epot (IV.2)

Like for the harmonic oscillator, the kinetic and potential energies fluctuate in time as
they are being transformed into each other all the time, keeping the total energy constant.
This is what we describe when using the plain Verlet method for a large molecule after
specifying the initial conditions. Looking into different regions of the molecule, the kinetic
energy can be very different locally.

It is known from kinetic theory of gases that the kinetic energy is related to the temper-

ature T'

(Elin) = gNk:T (IV.3)



with (Egn) = £ >, m; (v7). So, if we stuck a thermometer into various regions of the entire
system (with N particles), we would measure different temperatures, fluctuating in time.
This is not quite the situation we normally have in the experimental setup (a test tube
with a sample). Usually, our systems are in thermodynamic equilibrium with the envi-
ronment, so that they have the same temperature (and optionally pressure) as the environ-

ment.

e

E - Cmu/ /
/ system
// /// environment (bath)

FIG. 17: Left: Isolated system. Right: Closed system; exchange of heat in the canonical ensemble.
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The canonical ensembles allow for the exchange of heat and work, but not matter (par-
ticles).!* If we keep the volume, temperature and number of particles constant, we call the
system an NVT ensemble. If we keep pressure, temperature and the number of particles

constant, allowing the volume to change, it is called an NPT ensemble.

B. The canonical (NVT) ensemble: a closed system

In the canonical ensemble, the thermal contact of the system with the environment
leads to an exchange of energy in the form of heat, until the same temperature 7" as in
the environment is reached. Strictly spoken, temperature is only defined if there is such a
thermal contact, and therefore not applicable to the closed systems as discussed above.

For a classical system in thermal equilibrium is the velocity of a particle/atom (its com-

ponent in any direction) and the speed!'® given by the Maxwell-Boltzmann distribution

14 There is another thermodynamic ensemble with constant volume, temperature and chemical potential,
allowing the number of particles to change = exchange of matter with the environment (grand canonical

ensemble).
15 Velocity is the vector ¥ and its magnitude is denoted as the scalar speed (v).



2
my; mivy ;
p(vgi) = -exp |— ’ (IV.4)
2rkT 2kT
2
m; \3% m;v;
p(v;) = 47r( > <7 - exp |— IV.5)
(vi) 2rkT ! 2kT (
25 ; —_— 4 | . |
100 K L o\

ol B 100 K plug) = dr (m) 2 exp {’W}
S S 3 .
2 2
X 15— -1 X%
c c
S 1.0 -4 3 300 K ]
o a
o 1 €
o 300 K a1l _

0.5 —

00 I 1 I 1 | 0 1 | 1 [ 1

-800 -400 0 400 800 0 400 800 1200
velocity in the x direction (m/s) speed (m/s)

FIG. 18: The distribution of velocity in the z direction (left) and speed (right) of a No molecule

(ideal gas approximation).

With this, the equipartition theorem (Gleichverteilungssatz) can be derived, which

ascribes every degree of freedom the same amount of kinetic energy of

1 1
Since every atom i has three degrees of freedom z;, y; and z; (and v} = v2,; 4+ v} ; +v2,), we
find for the total kinetic energy of the system
1 1 1 1 3
i i

The point is that this special velocity distribution is a property of systems in contact with
a heat reservoir, which is not the case for the microcanonical ensemble.

We can use this formula to control the temperature in our system in a very simple way.
An algorithm that allows to control the temperature during an MD simulation is called

a thermostat.

1. Scaling of velocities

We start the simulation using one of the variants of the Verlet integrator, having specified

the initial positions and velocities. Usually, we know the positions from (experimental struc-



ture etc.), and velocities can be drawn randomly from the Maxwell-Boltzmann distribution
corresponding to a desired temperature (using a random number generator).

In the course of the simulation, the actual temperature will deviate from the target
temperature, which may be understood as the temperature of the heat bath in equilibrium
with the simulated molecular system:

2 Bya(t)
()*5 Nk

# Tt (IV.8)

Note a discrepancy with the previous definition of thermodynamic temperature (Eq. IV.3) —
temperature should correspond to the average of kinetic energy over time. However, Eq. IV.8
presents some sort of ‘instantaneous temperature,” i.e. ‘temperature’ in a certain time t.
This quantity will fluctuate in the course of simulation, whereas the true thermodynamic
temperature is an average over this simulation.

The instantaneous temperature is just another name for the mean kinetic energy
(Eq. IV.3), which is in turn determined by the velocities of the atoms. Now then, a simple
idea how to bring the instantaneous temperature to the target is to scale the velocities of
all atoms by a certain multiplicative factor X\. The required magnitude of this factor may be
estimated by casting the ‘new’ velocities A - v; into the expression for the temperature and

making this equal to Tie:

1 1
Tret = '_Zmi ()\'Ui)QZ

2 i
11
= \? — mv? =
SNk zzi:
= AT (IV.9)

From this, the value of A follows simply as

Tref

A:
T

(IV.10)

So, we have to scale the velocities of all atoms by this factor, in order to obtain the target
temperature T exactly.

This is a very crude way of controlling the temperature. From time to time, we knock
the system by rescaling the velocities, affecting the ‘natural’ way of evolution of the system.
This is quite drastic and can lead to artifacts. More importantly, the system does not

represent any canonical ensemble, i.e. its phase space density p is not that of a canonical



ensemble. As for the velocities, we never make sure that their distribution is correct (the
Maxwell-Boltzmann distribution). This is very important because we calculate all properties

of interest as averages:

1

(A) = E/p-AdFdﬁ (IV.11)

With the velocity scaling method, it could happen that our system would sample the phase

space incorrectly, leading to wrong averages.

2.  Berendsen thermostat

A way to avoid the severe turns in the dynamics is to adjust the velocities more smoothly,
resigning on the target temperature to be recovered in every step (like it is done with simple
scaling).

With the Berendsen coupling scheme, the simulated system is considered as coupled to
an infinite thermal bath with temperature T,.;. We ask the temperature to change between

two time steps according to:

dr 1
— == (Tt — 1 IV.12
dt 7'< ! ) ( )

so that the rate of change of temperature (due to the change of velocities) is proportional to
the deviation of the actual temperature from the target. The constant of proportionality is
the relaxation time 7, and this 1st-order differential equation corresponds to an exponential
decay of temperature towards the target. Thus, we want to change the temperature by
At
AT = — (Thes —T) (IV.13)
T

which will be achieved by scaling the velocities by a factor A as above:

AT = Ty =T =(N=1)-T (IV.14)

At (T,
A = \/1+—t( ref —1) (IV.15)
T T

For 7 = At, we get the simple velocity scaling; for the usually applied larger values

(1 = 0.1 — 1 ps), the temperature of system is fluctuating around the target temperature

(of the imaginary external bath).



This fluctuation of temperature is a desired property. For the canonical ensemble, we

can calculate the variance of ‘instantaneous temperature’ 7"
or = (T —(T))*) =(T*) - (T)” (IV.16)

and obtain the relative variance
2
or 2

(1)~ 3N

(IV.17)

For large number of particles (atoms) N, the magnitude of fluctuations approaches zero.
However, for finite-sized systems, we observe a visible fluctuation of temperature, which is
indeed a feature of the canonic ensemble. So, if we kept the kinetic energy (and thus the
instantaneous temperature) constant by means of the simple velocity scaling, we would not
obtain the correct fluctuations.

There are several drawback with the velocity rescaling algorithms:

e [t does not generate a rigorous canonical ensemble.

e Various parts of the system (different individual molecules, or solute x solvent) may
exhibit different temperatures, while the temperature of the entire system is correct.

This discrepancy may be maintained for extended periods of time.

e It gradually moves the energy from the fastest modes of motion to the slowest /weakest
ones, violating the equipartition theorem. The bond stretching and angle bending
modes are usually the fastest modes, and the loss of energy of these modes manifests
itself as a ‘freezing’ of the molecules. On the other hand, the three translations (and,
for aperiodic systems, the three rotations) of the entire system are the slowest modes,
and thus those that actually gain the energy. This problem is known as the ‘flying (or

spinning) ice cube.’

3. Andersen thermostat

The Andersen thermostat has an entirely different working principle. From time to time,
some particles (atoms) are selected to undergo a ‘collision’ with the particles of a heat bath,
which changes their velocities suddenly. Such an algorithm exhibits a certain stochastic
character.

This thermostat works as follows:



e Start the MD with a standard integrator (Verlet. .. )
e Select randomly the particles (atoms) that shall undergo a collision with the heat bath.

e For these particles, assign new velocities by a draw from the correct Maxwell-

Boltzmann distribution. All other particles remain unaffected.

The advantage of the Andersen thermostat is that if correctly implemented, it really
generates a canonical ensemble. However, for this to come true, the rate of collisions with
imaginary particles must be neither too low (insufficient) nor too high (in that case, the

collisions would dominate the dynamics of the system over the equations of motion).

4. Nosé—Hoover thermostat

The Nosé-Hoover thermostat rigorously represents a canonical ensemble and is thus usu-
ally the method of choice. However, it is conceptionally and mathematically slightly difficult
to understand. We present the fundamental ideas here.

The heat reservoir is treated as a part of the system and is assigned an extra degree of
freedom s, with which a fictitious mass () is associated. The equations of motion are then
derived for this extended system with 3N + 1 degrees of freedom.

The equations of motion for the atoms are modified to

F;
Fo= L — 5.1y (IV.18)
m;

with the second term formally corresponding to a kind of ‘friction’ due to the bath. Further,
there is another equation of motion for the bath parameter s:

1
- Q

The strength of coupling of the real system to the bath is determined by the ‘mass’

(T — Trer) (IV.19)

parameter (). This may be made more intuitive by introducing a time parameter 7:

2
T T'ref
472

Q= (IV.20)

This parameter has the meaning of a period of oscillation of the kinetic energy between
the real system and the bath. Here, it is important to note the difference between the

7 in the Berendsen and in the Nosé—Hoover coupligs: The Berendsen method consists in



the exponential damping of temperature difference, with coefficient 7. In the Nosé-Hoover
framework, an oscillatory relaxation of temperature is achieved, with period 7.

This way, the prerequisities of the thermostat are incorporated in the equations of mo-
tion, and the thermostat thus constitutes an integral part of the integrator, rather than an
a posteriori correction, as is the case of all previosly mentioned ones. The Nosé—Hoover
thermostat is used frequently and it can be shown that the ensemble average taken with the

Nosé-Hoover ensemble is identical to that of the canonical ensemble.

C. The canonical NPT ensemble

Rather than under the condition of constant volume, chemical experiments are usually
performed under constant pressure, often the atmospheric pressure. Therefore, it is of
importance to be able to implement such conditions in MD simulations as well.

Similar to temperature, it is possible to calculate the pressure in the simulation. This is

usually done by using the quantity called the virial of force:

[1]

1 .
=3 Zﬁj - Fy (IV.21)

i<j
where 7j; is the vector connecting atoms ¢ and j, and ﬁij is the force acting between these

atoms. The pressure then follows as'®

P 2 [1 oy Il =

i<j
A surprising feature of pressure calculated in this way is that it fluctuates immensely along
a simulation and can even assume negative values!

Once a means to calculate the pressure is available, it is possible to develop an algorithm
to maintain it at a constant value. These barostats are equivalents of the Berendsen or
Nosé-Hoover algorithms to maintain constant temperature. Instead of velocities, it is the
volume of the simulation box that is varied in order to adjust pressure; this is done either

directly (Berendsen) or again via an additional degree of freedom (Parrinello-Rahman).

16 Note the difference between the kinetic theory of gases and this definition — the idea of the particles

colliding with the wall of the container is not present here.
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FIG. 19: Temperature and pressure in an NPT simulation of DNA oligomer in water (T = 300 K,
Pief = 1.0 bar).

D. Exercise

Prove the equipartition theorem (Eq. IV.6) using the Maxwell-Boltzmann distribution
(Eq. IV.5) as the phase-space density to evaluate the ensemble average <v§’j>ens (Eq. II1.9).

To do this, you have to solve integrals of the forms

/ 2% exp|—ar?] dx
0

and
/ exp[—az?] dz
0

which may be found at http://en.wikipedia.org/wiki/Lists_of_integrals.



V. NON-BONDED INTERACTIONS

There are several reasons to take particular care of the non-bonded interactions:

e They are a key to understand the structure, function and in particular the efficiency of
action of many proteins. It is the electrostatic and/or van der Waals interaction of the
protein with the ligand that is responsible for the efficiency of a reaction, color of the
chromophore etc. The solvent surrounding is co-responsible for the particular structure

of nucleic acids, polypeptides and proteins (hydrophobic-hydrophilic residues).

e The non-bonded interactions are treated in MM by two-body potentials, and the com-
putational effort of O(N?) dominates the overall requirements for large molecular sys-
tems. Therefore, the non-bonded (above all, the long-range electrostatic) interactions

represent a good target for optimizations.

e Solvation plays a crucial role in determining the structure and function of biomolecules.
However, the necessary amount of water is often extremely large, becoming the main
source of computational cost.!” Therefore, there is a need to efficiently describe the
solvation effects, which are of a predominantly electrostatic character (due to the large

dipole moment of the water molecule).

A. Introduction to electrostatic interaction

The electrostatic interaction energy of two point charges q and () separated by a distance

r is given by Coulomb’s law

Eel — 1 . q- Q
4reg r

(V.1)

Of importance is the concept of electrostatic potential (ESP), induced at the point 7 by a
point charge @) located at 77:

o(r) = ' = (V.2)

17 Typically, the simulated molecular system consists from more than 90 % of water, so that more than 80 %
of the computational time is spent by calculating the forces among the (uninteresting) water molecules

around the (interesting) solute.



If we know the electrostatic potential at a point 7 in space, then we can obtain the total

electrostatic energy of a charge ¢ at this point:
E(F) = (1) - q (V.3)

In this way, we can have an ‘electrostatic potential energy surface’ in analogy to mechan-
ics. There, if we know the topography of the Alps, then we immediately know the potential
energy of a person with a weight of 70 kg, at any point. In a similar way, if we know
the electrostatic potential induced by the atoms of a protein, then we can readily obtain
for instance the binding energy of a point charge (like a metal cation) at any place. The

electrostatic potential induced by a number of point charges @); follows simply as a sum

4
471'80 Z |7 — 7% (V.4)

with the energy of a point charge ¢ at 7" given by Eq. V.3.

In case of a continuous charge distribution, we have to consider the charge density p =
Q/V, with p(7) being the charge density at the point 7. Then, Q; = p(7;) - V; = p(7;) - AV

is the charge in the ¢-th volume element V;. Summing over all elements, one obtains

p(73)
47r50 Z |F— 7] (V:5)

If we make the volume elements infinitesimally small, this changes to (with d37 = dV)

o) = o [ 2O (V.6

|7 — 7|

Finally, the electrostatic energy of a charge distribution p(7) follows as

=5 [ o pmav = [[ D wrer, (V.7

The main task is to get the electrostatic potential from a charge distribution. For that,

one has to solve Poisson’s equation

V20(7) = —@ (V.8)

(differential equation for ® as a function of 7), or, if the permittivity € is not constant,

V (eVO(r)) = —p(7) (V.9)



As an example let us have a look at the ESP of a gaussian charge distribution. This

distribution centered around the origin of coordinate system with a width o is given as

1 r?
—0. : — V.10
o =0 o321 o [202} ( )
The corresponding solution of the Poisson equation is
1 Q r
O(r)y=— —=-erf V.11
(r) dne 7 O [\/ﬁa} ( )

with erf being the error function. Here, if we move far enough from the center of the charge
distribution (r is large), the error function converges to unity and the ESP is very near to
that of a point charge placed in the origin (Eq. V.2). This is in accord with experience —
a point charge and a well-localized charge distribution interact with distant charges in the
same way. Actually, we need not go so far in order to see that — the error function assumes

a value of 0.999 already at the distance of 2.40.

B. Periodic boundary conditions

The most frequent objective of MD simulations is to describe a molecular system in
aqueous solution. The problem that we readily encounter is that we have to make the system
as small as possible, in order to reduce the computational cost. The most straightforward
way to do so is to consider only a single molecule of the solute (e.g. a protein or DNA
species) with a smallest possible number of solvent (water) molecules. A typical size of such
a system with several thousand water molecules is in the range of units of nanometer. Here,
a serious issue occurs: while we are trying to describe the behavior of a molecule in bulk
solvent, every point in such a small system is actually very close to the surface. The surface
layer of a system has always properties very different from those of the bulk phase, and with
such a setup, we would simulate something else that what we aim at.

An elegant way to avoid this problem is to implement the periodic boundary con-
ditions (PBC). Here, the molecular system is placed in a box with a regular geometrical
shape (the possibilities are listed below). This polyhedron is virtually replicated in all spa-
tial directions, with identical positions (and velocities) of all particles, as shown in Fig. 20.
This way, the system is made infinite — there is no surface in the system at all. The atoms
in the vicinity of the wall of the simulation cell (like the black circle in Fig. 20) interact

with the atoms in the neighboring replica.
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FIG. 20: Replication of the unit cell (grey) using periodic boundary conditions. Interactions of an

atom (black) with the nearest images of all other atoms (red).

This method is not quite perfect as it introduces artificial periodicity in the system — all
the replicas of the simulation cell look the same, making the thermodynamics of the system
incorrect in principle.'® However, this treatment is much better than simulating a too small
system with artificial boundary with vacuum.

Practically, the implementation has the following features:
e Only the coordinates of the unit cell are recorded.
e [f a particle leaves the box, then it enters the box from the other side.

e Carefull accounting of the interaction of the particles is necessary. The simplest ap-
proach is to make an atom interact only with the N — 1 particles within the closest
periodic image, i.e. with the nearest copy of every other particle (minimum image
convention). This is to avoid the interaction of an atom with two different images of
another atom, or even with another image of itself. If the box is cubic with boxsize
L, then each atom can interact only with all atoms closer than L/2. Evidently, PBC

have to be synchronized with the applied cut-offs, see below.

The unit cell may have a simple shape — cubic or orthorhombic, parallelepiped (specially,

rhomboeder), or hexagonal prism; but also a more complicated like truncated octahedral

18 For instance, the entropy of the entire system is obviously too small, because of its (wrong) translational

symmetry. As a general rule, this is rarely a problem.



or rhombic dodecahedral. In the latter two cases, the corresponding PBC equations are
quite complicated; the advantage of such shapes for the simulation of spherical objects (like
globular proteins in solvent) is that there are no voluminous distant corners which increase
the amount of solvent and thus the computational complexity (like in the case of cubic
Jorthorhombic box). Two-dimensional objects like phase interfaces are usually treated in a

slab geometry.

FIG. 21: Truncated octahedron (left) and rhombic dodecahedron (right).

C. Accelerating the calculation of non-bonded interactions — cut-off

As mentioned above, the evaluation of non-bonded terms becomes a bottleneck for large
molecular systems, and in order to make simulations of extended systems possible, it is
necessary to limit their computational cost.

The simplest and crudest approach is to neglect the interaction of atoms that are further
apart than a certain distance r.. This so-called cut-off is commonly used with the rapidly
decaying (1/r%) Lennard-Jones interaction, which indeed nearly vanish already for moderate
distances 7., commonly around 10 A. However, with the slowly decaying electrostatic inter-
action (1/r), this would lead to a sudden jump (discontinuity) in the potential energy; even
worse, this would be a disaster for the forces, which would become infinite at that point.

A better idea would be to shift the whole function by V' (r.), so that there is no jump at
r. anymore. We would have

V() = Vi(r)=V(r.), for r<r, V.12)

0, otherwise.

However, the gradients (forces) are at r. still not continuous! To eliminate this force jump,



it is possible to apply a shift-force potential (V' = dV/dr):

Vot () — Vir)=V(re) =V'(re) - (r—re), for r<r, V13)

0, otherwise.

The obvious drawback of this method is that the Coulomb energy is changed!
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FIG. 22: Electrostatic interaction energy of two unit positive charges, evaluated using Coulomb’s

law and the various modifications.

A further alternative is the switch potential. Here, an additional potential is applied
starting from a certain distance 71, which brings the Coulomb interaction gradually to zero,
as shown in Fig. 22. The drawback of this method is, that the forces are altered in the
cut-off region.

Both methods can be applied to either the energy or the forces: when applied to the
energy, the forces follow through differentiation, and vice versa, when applied to forces, the
energy follows through integration.

Generally, the cut-off schemes can be based either only on atomic distances, or on func-
tional groups. Usually, the latter is employed to assure charge conservation in the Coulomb

interaction.



D. Accelerating the calculation of electrostatic interactions — Ewald summation

In many cases, above all if highly charged molecular systems (like DNA or some proteins)
are simulated, the use of cut-offs is a bad approximation. For instance, the artificial forces
if using a switching function may lead to the accumulation of ions in the regions of solution
in the cut-off distance (measured from DNA). Therefore, it is desirable to abandon the
minimum image convention and the cut-offs, and rather sum up the long-range Coulomb
interaction between all the replicas of the simulation cell

Let us introduce a vector 7, which runs over all the replicas of the cell, denoting them

uniquely:
e For |77] = 0, we have 77 = (0,0,0) — the central unit cell.

e For |7i] = L, we have 7 = (0,0,£L), 7 = (0,£L,0), 7 = (£L,0,0) — the six neigh-

boring unit cells.
e Further, we continue with 77| = v/2- L and the 12 cells neighboring over an edge, etc.

With this vector, we can write the sum of Coulomb interactions over all replicas as

ECoul Z Z |TU n n| (V14)

,] 1mag0s i

for indices ¢ and j running over all atoms in the unit cell (r;; is then their distance). This
expression is an infinite sum which has special convergence problems. Such a sum decays
like 1/|7i| and is a conditionally convergent series, meaning that it converges (.2, a; < 00)
but does not converge absolutely (377, |a;| cannot be summed up). The problem is that the
convergence of such a sum is slow and, even worse, dependent on the order of summation.

So, a conditionally convergent series may add up to any (!) value, as shown in this example:

1 1 1 1 1 1 1
1:15:11_51+§1_11+5_6+?_§+"
I4I S = 14 g—gtetz—gtgt gt
:1—%+%—i+%—é+ =5 (sic!) (V.15)



Therefore, we need a clever way to evaluate the potential resulting from the interaction

of all images of all charges

Z Z U+n| (V.16)

i images |7

in order to evaluate the Coulomb energy of the charges ¢; in the unit cell.
1
Coul __ . -
E~" = 5 E qi - ®(77) (V.17)

The idea of the Ewald methods is to convert the difficult, slowly convergent series to the

sum of two series, which both converge much more rapidly, like

2%22@+Z_1_5<T) (V.18)

where Y 1/r represents the difficult series that we have to deal with. Whereas the terms
on the right-hand side look more complicated, they actually exhibit a much more rapid
convergence than > 1/7 in our case, and such an awkwardly looking ‘decomposition’ is the
preferred way to go.

Since the summing over point charges leads to convergence problems with conditionally
convergent sums, the Ewald method uses rather normal distributions of charge of the same

magnitude:

a4 — q- (%)36XP [—a® - |75]?] (V.19)

To get the electrostatic potential induced by this smeared charge distribution, Poisson’s

equation (Eq. V.8) has to be solved. This leads to the potential being represented by the

so-called error function:*

erf [a 7]

() = q; - (V.20)

19 The error function is defined as the definite integral of the normal distribution

erfx / exp[—t*]d
VT

and the complementary error function as

erfc[z] = 1 — erf[z]



and, in the special case of ¥ = 0:

®(0) =0,

If we sum up the potentials given by Eq. V.20 for all charges, we obtain

Z Z ‘ erf i + 1] (vV.22)
|TU + 7| '

| images |7i

(V.21)

This has to be compared with the potential induced by the point charges (Eq. V.16). The
difference between Eq. V.16 and Eq. V.22 is given by the complementary error function.
The genuine potential induced by the point charges can then be expressed as

|sz + 1 '

J images |n|

erf | 4]
V.24
+ Z Z |sz + T_i| ( )

Jj images |n|

The first term V.23 called the real-space contribution is shown graphically in Fig. 23
(top). From a certain (quite small) distance, the point charges and the gaussian charge
distributions (with opposite signs) cancel each other. This distance depends on the gaussian

width a — a small gaussian width would lead to a rapid convergence.
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FIG. 23: Top: Real-space contribution to the Ewald sum consists of the original point charges

(red) and gaussian charge distributions (blue) of the same magnitude but opposite sign. Bottom:

Reciprocal-space contribution.

On the other hand, the second term V.24 called the reciprocal-space contribution is best
evaluated in the form (E — the reciprocal lattice vector of periodic images)

1 1 |k|?
Erec — . -
2Veq g k2 P [ 4a2]

2

Z q; - exp|— 7] (V.25)




The usually applied Fourier transform techniques® need a large gaussian width « for fast
convergence, therefore the value of «r is a necessary compromise between the requirements for
the real- and reciprocal-space calculations. All in all, both mentioned contributions exhibit
quite favorable convergence behavior, making the evaluation of the electrostatic potential

due to all periodic images feasible.

After calculating these two terms (Fig. 23), yet another one has to be taken into account:

Since we have broadened charge distributions, they do interact with themselves, as shown

in Fig. 24. This interaction has been brought about by the substitution of point charges by

gaussian charge distributions, and thus it must be subtracted from the final result.

FIG. 24: Interaction of the charge with the gaussian distribution

The potential of a broadened gaussian is given by Eq. V.21, which leads to Coulomb
energy of

. 200
el — Z g - () = qu ;- 7 (V.26)
J J

At the end, we have three energy contributions: one from the ‘real-space’ evaluation of
dreal in Eq. V.23, which gives

rea. 1 rea. b
B =5 D ¥ (v.27)
one from the ‘reciproal-space’ evaluation of ®"¢ in Eq. V.25 and the ‘self-energy’ in Eq. V.26,

so that

EEwald — Ereal 4 Erec _ Eself

(V.28)

20 A popular implementation is the FFTW (Fastest Fourier Transform in the West), with a favorable com-
putational cost scaling as O(N - In N).



E. Explicit solvent models — water

The most simulations of biomolecules are performed with water as the solvent, to mimic
the physiological or in vitro experimental conditions. If a not too concentrated solution is to
be simulated, then the necessary amount of the solvent is quite large, often many thousand
molecules.

For instance, in a typical simulation of a DNA oligomer with ten base pairs (see Fig. 25),
the dimensions of the PBC box are 3.9 x 4.1 x 5.6 nm, and there are 630 atoms in the DNA
molecules, 8346 atoms of water and 18 sodium counterions. The macroscopic concentration
of DNA in this ‘sample’ reaches an astonishingly large value of 18 mmol/L!*! At the same
time, 86 % of all pair interactions are those where each of the partner atoms belongs to a
water molecule,?? and the most remaining interactions involve one atom of water. This is a
huge portion, and the smallest possible at the same time, as we have the minimal number

of water molecules.

FIG. 25: Typical setup of the simulation of a DNA oligomer.

We can see that the most interactions involve water, and that is why it is necessary to
turn our attention to the description of water in the simulations. The model of water must
be made simple enough in order to reduce the computational complexity, but at the same

time it is necessary not to compromise the accuracy of the description.

21 Due to the commonly accepted criteria, such a box is the smallest possible. Thus, the amount of water is

also the smallest possible, and the concentration the highest possible.
22 There are 8346 water atoms, that is roughly 83462 interactions water—water, and 8994 atoms altogether,

corresponding to 89942 pair interactions. The ratio of these figures is 0.86.



Many simple water models have been developed so far. They are usually rigid, so that
the bond lengths as well as angles remain constant during the simulation. A molecule is
composed of at least three sites (corresponding to atoms in this case), but possibly also as
many as six sites — three atoms and optional dummy particles corresponding to a ‘center’ of

electron density, or to the lone electron pairs on the oxygen atom.

L /L L /L
/O 0~ O O\
e \H H/ M \H H/ \H H//r\'n Nn

3-site 4-site 5-site G-site

The most frequently used atomic model of water is the TIP3P (very similar is the SPC).
A TIP3P molecule consists of three atoms connected by three rigid bonds. A charge is
placed on every atom (—0.834 on the O and +0.417 on the Hs), while only the oxygen atom
possesses non-zero Lennard-Jones parameters.

If the negative charge is placed on a dummy atom M rather than on the oxygen, then
the electric field around the molecule is described better. This idea is implemented e.g. in
the TIP4P model.

A further improvement may be achieved if two dummy particles L bearing negative charge
are placed near the oxygen atom, to mimic the lone electron pairs. Consequently, such a five-
site model (like TIP5P) describes the directionality of hydrogen bonding and derived effects
(radial distribution function, temperature of highest density) better than less sophisticated

models.

23 This makes it possible to additionally optimize the algorithm for the calculation of energy and forces.



VI. PRINCIPLES OF STATISTICAL MECHANICS

In the last chapters, we often used the notion that a particular ensemble generated by a
simulation does not represent the canonical ensemble. This means that the phase space is
sampled differently in the simulation than what would correspond to the canonical ensemble.
But what does the canonical probability distribution function look like? Let us first
have a look to the microcanonical ensemble.

Interestingly, the statistics is simpler for quantum mechanics (QM) than for classical me-
chanics (CM). The reason is that in QM, we can talk about discrete states, while everything
in CM is continuous. In CM, have to select small volumes of phase space and calculate the
density there. On the other hand, in QM, we can use for instance the discrete energy states

of molecules or quantum oscillators as simple examples, as we will do in the following.

A. Microcanonical ensemble — microstates for constant energy

If the energy of the system is the same for every microstate, then we assume that every
microstate of the system occurs with the same probability. With microstate we understand
the particular distribution of energy among the particles in the system. Another important
concept is that of the configuration or macrostate, which is defined by the occupations of

energy level by the individual indistiguishable particles — see Fig. 26 for an explanation.

El -O-O O& -0
FIG. 26: A system of three particles with two available energy levels. In one of the possible
configurations (left), two indistinguishable particles (grey) occupy the level E1 while the remaining

one sits on the level E2. This configuration is composed of three microstates (right) which differ

in the exact distribution of particles (with various symbols) among the energy levels.

The important point is that since all microstates have equal probabilities, the probability
of a configuration is given by the number of microstates that correspond to the configuration.

Thus, if we wish to know the probability of a configuration, we have to count the microstates



that compose the configuration.

1. Ezample — counting the microstates

Consider a system of three particles that possess three identical energy quanta altogether.
These three energy quanta can be distributed as shown in Fig. 27. We find ten microstates
and three classes of systems, which we shall call configurations A, B and C:

Now, we wish to count, in how many ways we can distribute the energy quanta, thus how
many microstates we have. In principle, we will do it in the following way: One particle

obtains [ quanta, the next m, and the last one n quanta of energy, where [ +m + n = 3.

A = 1 I

FIG. 27: Possible microstates with three energy quanta in the system.

There are three possibilities to divide three energy quanta between three particles: (3,0,0),
(2,1,0) and (1,1,1) — these are the configurations A, B and C, respectively. For every
configuration, we have now to assign the quanta spcifically to the individual particles. This

runs as follows:

e We start by pick a first particle and giving it the largest number of energy quanta in

the configuration. We have & choices.

e Then, we assign the second-largest number of quanta to another particle. There are 2

choices.

e There is only 1 choice particle left to accomodate the smallest number of quanta.



This makes 3 -2 -1 = 3! = 6 choices in total, for the given configuration.

However, there are some degeneracies, so that we do not always obtain six different mi-

crostates:

Config A:

Config B:

Config C:

Let us give particle 1 three quanta. Then, it does not matter if we choose particle 2 first
to obtain zero quanta and particle 3 next, or particle 3 obtains zero quanta first and
article 2 follows. The result is the same as seen in Fig. 27. There are two particles that
obtain the same number of quanta, and two assignements are thus indistingushable,
leading to an identical result. However, we have counted both ways, and to obtain
the right number of microstates we have to divide by 2 -1 (two times one redundant
assignment). The number of microstates is thus

3!

All three particles are given a different number of quanta, so that no degeneracy

actually occurs. The number of possibilities to distribute the quanta is thus truly

31'=6

Trivially, there is only one microstate for this configuration. In detail, we have to
assign the particles three identical numbers of energy quanta, and so we obtain the
number of microstates by dividing by 3!

3!

31

Thus, there are ten microstates for our system; these have been already presented in Fig. 27.

2. Number of microstates for a configuration; the dominating configuration

Generally, if there are NV particles, then there are N ways to pick the first, N — 1 ways to

pick the second etc. Thus, we have N! ways to build up the system. But then, if n, particles

have to accomodate the same number of energy quanta, then the real number of different

microstates is obtained by dividing by n,!. Then, we find the number of microstates W for

a system of NV particles in a certain configuration as

N!
W= (VI.1)



with n; being the numbers of particles accommodating the same number of energy quanta,
which we shall also call occupation numbers of the energy levels.
For a large number of particles N, W follows as an extensively large number, and thus it

is practical to consider the logarithm of it:

W I In[N1] = In[ng!] — In[ny!] — ... = In[N1] = > "In[n,!] (VI.2)

ng! -nyl ...

and using Stirling’s approximation Ina! = a - Ina — a we find
an:N-lnN—Zni-lnni (VL3)

We may introduce the fraction of particles in state i, or the probability of a particle to

be found in state 7, as
Di = (VI1.4)

Then, it follows that

an:Zni-lnN—Zni-lnni:—Zni-ln% = —N-Zpi-lnpi (VL5)

Now, we can calculate the number of microstates corresponding to a given configuration.
The crucial point is now to find out which configuration has the largest weight, in other words,
is the most likely. This will be the configuration with the largest number of correspoding
microstates — the task is thus to find the maximum of W as the function of occupation

numbers n;.
Method of Lagrange multipliers:

We want to find the maximum of a function f(Z) under the condition that cer-
tain constraints y(Z) = 0 are fulfilled. Then, we can search for the maximum

by taking these constraints into account in the following way:

8(1 <f(f) - Z)\kz : yk(f)> =0

aii <f(f) - ; Ak - yk(f)> =0 (VI-G)

with z; running over the components of Z. So, we add the constraints to the

function and set all the derivatives to zero, as usually.




This may be applied to the microcanonical ensemble: We are looking for the configuration

with maximum weight of a system of N particles distributed among energy levels ¢;, with

the total energy E. Subject to maximization is then the weight
MW =N-InN-> n-lnn
under the normalization conditions
» ni—N =0
Z r; ce5—FE =0

which express the constant number of particles and the constant energy.

The application of Lagrange’s method leads to the equations

InW +a- <zj:nj—N> -3 (Zj:nj-ej—E>

olnW
0ni

87@

+ o — ﬁ c & — 0
once we used —a and S for the Lagrange multipliers. This leads to the solution

% xpla— el

where the parameter o may be obtained from the condition VI.8 as

1
. exp[=0 - g

expa =

so that

n; _ exp[—=f-¢j
N Y exp[—-g]

(VLT)

(VL8)

(V1.9)

(VL.10)

(VI.11)

(VI.12)

(VL.13)

(VI.14)

In the microcanonical ensemble, the parameter 3 might be estimated from the condition

V1.9 in the form

E Zj g; - exp[—f - gj]
N Y exp[—f-¢j]

(VI.15)

An important observation is that if the number of particles N is huge, there is always

one configuration with weight much larger than that of all other configurations. This domi-

nating configuration then actually determines the properties of the system. The occupation

numbers n; obtained above correspond to such a dominating configuration.



B. Microscopic definition of entropy

The configurations p; = %, %, %, ...and p; = 1,0,0,... are the extreme cases. In the

former case, In W is maximal (for large N)
InW=N-InN
whereas in the latter case it is minimal
InW=Inl1=0
We define the microscopic entropy as
S=—kg-InW (VI.16)

where the universal constant kg is the so-called Boltzmann constant. This property tells
us something about the travel of the system through the configuration space. If entropy
is small, few states are occupied; if it is large, then many states are occupied. We may
see the requirement of the maximal number of microstates corresponding to the optimal
configuration in the microcanonical ensemble as the requirement of mazimal entropy.

Entropy can be related to the order in the system. If entropy is small, only a small
part of the configuration space is accessible, and we consider the system to be ordered. On
the other hand, if entropy is large, an extended part of the configuration space is covered.
Think of the books on your desk. When they are all stapled on one place on your desk,
you consider this state to be ordered, while when they are freely distributed over the entire
room, you would probably call this state disordered.?*

There is also another route to the entropy, via the so-called information entropy. If
entropy is minimal, we have perfect knowledge about a system — it is in the state i because
p; = 1. If entropy reaches its maximum, we have no information at all, as every possibility
is equally likely. Think again of the books in your room: if S = 0 then p; = 1 and you know
that a particular book is on your desk. If S = kg - In N, you know that the book is in one

of the N possible places in your room. In this case, you have no idea where to look first!

24 Jan Cerny (Charles University in Prague, Department of Cellular Biology) once coined the term anthropy

for “entropy of human origin” as is the case of the books on your desk.



Second law of thermodynamics

The second law claims that entropy increases in every irreversible process:

0
=S5 >0.
atS—O

For a closed system, the microscopic entropy does not have this property. This
can be most easily seen in a quantum mechanical example:
Consider particles in a box with a wavefunction ¥, for which we solve the
Schrodinger equation

—ih¥ = HV

We can expand this in the set of eigenfunctions of the box ¢;

U= Zcz’@'

to get
—ihW = H¥
—ih - iy = ZCjHij¢j
J
We see that the probability to find the particle in state ¢;

bi = |Ci|2

does not change during the dynamics:
pi=0

This leads to the entropy change of

0 0
ES = kg - En <—kB ;pi'lnpz‘) =0

The microscopic equations do not lead to any change in entropy, in contradic-
tion with the second law. Yet, we can understand that this has to be so: We
know the initial conditions of a system p;. Then, since our equations of motion
are perfectly deterministic, we know how every trajectory evolves — we know
p; at every instant! This way, the change of information entropy is zero!

In the example of your books on the desk. Initially, they are all on the desk.
Since you know all the equations of motion of every book, you know exactly
where every book is at any later time T. So, you have perfect knowledge of

your system and the entropy change is zero!




C. Canonical ensemble — system in equilibrium with the environment

For the microcanonical ensemble, we optimized In W, and so looked for the configuration
of probabilities p; such that gave the largest number of states, which maximized the entropy.
In our example, W was the number of microstates for a certain configuration of particles
over the energy states ¢; in the system (g1, €9, ...). We saw that for the occupation numbers
(2,1,0) in the conformation B we got the largest number of states. This was the dominating
configuration in the sense that the most microstates belonged to it. Therefore, if we wanted
to know the configuration with the largest number of microstates, we had to vary the n; in
order to maximize In W. And this was the most probable configuration.

Now, we shall consider the system to be in contact with the environment. Under such
circumstances, it is the temperature rather than energy that remains constant. The famous

Boltzmann distribution of p;

exp|—0 - &
>, expl—5 <) W
is valid, with the denominator
Q=> exp[-f-¢)] (VL.18)
J

being designated as the canonical partition function (Zustandssumme).
To derive what 3 means, we have to remember some basic thermodynamics: The energy
as the basic thermodynamic potential depends on the extensive variables entropy, volume

and number of particles:
E=ElS,V,N)=TS —pV —uN (VI.19)

Therefore, the thermodynamic temperature comes into play by means of

0L _ . 25 1

Now, we can use the microscopic definition of S to calculate

-1
1 _05_05 98 _ , N0 5 pov (S ..
T-0E o 9B ™ ;EM( fa =) (;ng) = s 5 (VI21)

when using

op 0 0
255 952 g5t ="



Finally, we have

1

For continuous systems, the spacing between the energy levels becomes infinitesimally

small and we can write

. 1 E(7,p)
- . B S E A [.2
p(7, ) 0 eXp[ T } (VL.23)
with the canonical partition function
E —
Q= / exp |~ LD a7 (VI.24)
kgT

D. Canonical partition function — the way to the thermodynamic quantities

The partition function () seems to be a purely abstract quantity, but the very opposite
is true! In order to characterize the thermodynamics of a system, we need just to evaluate
@ and the desired thermodynamics observable follow as functions of (), in principle. This
illustrates the purpose for which the statistical thermodynamics has been developed: it
makes us able to derive the (macroscopic) thermodynamic properties of a system from the
knowledge of (microscopic) properties of the molecules that compose the system, with the
partition functions connecting the microscopic and the macroscopic.

As an example, we may calculate the mean total energy of a system from the dependence

of canonical partition function () on the parameter  or the temperature 7"

oln@Q o, 0ln@
_ = knT?.
Bl e oT

(E) = (VI.25)

E. Exercises

1. You have 20 (identical) cookies and six boxes (for six of your friends, which makes
the boxes distinguishable). How many possibilities do you have to distribute them as

follows: {1,0,3,5,10,1} (this is the distribution of cookies in the 6 boxes). Use Eq. VIL.1.
2. Prove Eq. VI.21.

3. Calculate the average energy of the classical harmonic oscillator using the Boltzmann

distribution.



VII. THERMODYNAMIC PROPERTIES OF MOLECULAR SYSTEMS

We got to know the principles of statistical mechanics and its significance as the way
from the properties of particles to the thermodynamic properties of ensembles. The role of
the mediator of information is played by the partition function.

In this chapter, we will see

e how the thermodynamic equilibrium is characterized, which quantities are of interest

and how these may be derived from the partition function,
e how the partition function is connected to the phase-space density,

e how the ensemble partition function may be derived from the partition function of a

single molecule,
e that MD simulation provides an alternative way to thermodynamic quantities,

e that it is difficult to obtain free energies from normal simulations.

A. Driving forces of thermal processes. Equilibrium

Classical thermodynamics introduces the concepts of thermodynamic equilibrium and
spontaneous process, and identifies the quantites that are maximized /minimized in the equi-
librium and show a definite change in the course of a spontaneous process.

So if the system does not exchange energy with the surroundings, as is the case in the mi-
crocanonical ensemble, the equilibrium is reached if entropy S is maximized. Consequently,
a process proceeds spontaneously if it introduces an increase of entropy (AS > 0).

The case of microcanonical ensemble is simple as there is no exchange of energy with the
surroundings, but the situation is more complex if we pass to the canonical ensemble. Here,
it is necessary to consider a super-system composed of the system of interest together with
the surroundings, once we wish to identify the equilibrium and the spontaneity of processes.
Of course, it is near-to-impossible to estimate the entropy of such a super-system, as we
cannot handle the whole universe in a calculation. Thus, an alternative criterion has to be

sought.



A way to concentrate on our molecular system and to be able to omit the surroundings,
is to introduce a new thermodynamic function. In case of the canonical ensemble; the key

function is the Helmholtz free energy
F=U-TS (VIL.1)

The equilibrium state in canonical ensemble exhibits a minimum of Helmholtz energy, and
F' decreases in the course of a spontaneous process.

This is the fundamental property we are intersted in, because

e "= F(T,V): F depends on the variables 7" and V', which are experimentally control-
lable, while U = U(S, V) depends on S and V. We have no means to control entropy
in experiments. In particular, F' is the energetic property which is measured when T'

and V' are constant, a situation we often model in our simulations.

o AF = F;—F, = W™ is the mazimum amount of work that the system can perform
between an initial (i) and final (f) state. In the first law dU = 6Q + dW, we can cast

in a formulation of the second law T'dS > 6Q to obtain®
dU < TdS + oW
and for the amount of work
oW > W =dU —TdS = dF

Therefore, the work is always greater or equal the change of free energy.?® In other
words, a certain amount of internal energy dU can never be converted to work, because

a part of it is always lost as an increase of entropy.

e In principle, energy minimization as we have discussed before, does not make any
sense. The energy is simply conserved, but within the entire universe (the universe
thus samples a microcanonical ensemble). Once we have defined a quantity like free
energy, the idea of a minimization procedure is restored: Systems will evolve in order
to minimize the free energy; however, this is nothing else than the maximization of

entropy of the super-system (universe).?”

25 This unequality becomes an equality for a reversible process.
26 Note that if the system performs work, then the value of §W is negative. So, the value of W™2X is the

most negative possible, and its magnitude represents truly the maximum possible work.
27 In an NPT ensemble, the same role is played by the Gibbs free energy G = H — TS =U + pV —TS.



B. Thermodynamic functions from statistical mechanics

Now, we want to apply the formalism to calculate enthalpies and free energies of
molecules. The main trick we learned is, that we only have to calculate the partition

function @), since from there we get all thermodynamic functions:

J0lnQ
_ _ 2
U = (B) = kaT* (VIL2)
J0lnQ
S = kT =" + ko - InQ (VIL3)
F = —ksT 10Q (VIL4)
P = kgT O @ (equation of state) (VIL5)
ov )
H=U+pV (VIL6)
G=F+pV=H-TS (VILT)

Therefore, the computational problem reduces to the need to determine ().

The problem of evaluation of the partition function may be greatly simplified for two
special cases. If the system is composed of n identical distinguishable particles, as is the
ideal crystal, then the ensemble partition function ) is obtained from the molecular partition

function q as
Q=q" (VIL.8)

In the other case, if the n particles composing the system are identical and indistinguishable,
as in the gas phase, then another relation is valid:
o-L (VILY)
n!
Note the immensely reduced need of effort that we have to make in these cases: It is only
necessary to evaluate the molecular partition function q for one molecule of the substance
in the studied system, and we obtain directly the thermodynamic quantities of interest, via

the ensemble partition function Q).



C. Discrete and continuous systems

Discrete systems

In the chapter about statistical mechanics, we considered a (typically, but not necessarily)
quantum-mechanical system, i.e. a system with discrete energy levels E;. For that, we found

a partition function

Q=">_exp[-SE] (VIL10)
and a (discrete) Boltzmann distribution function
1
Di = é exp|—[E;] (VIL.11)

which is the probability to find the system in state ¢ with energy FE;.

A prominent example is the harmonic oscillator with energy levels

1
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FIG. 28: States of a quantum-mechanical harmonic oscillator. The thermal distribution of energy
over the vibrational states leads to the number of microstates and a value for the entropy/free

energy.

Continuous systems

On the other hand, we discussed the dynamics of molecules, where temperature allows
to sample a certain part of the conformational space of a protein. This means, that at a
certain temperature only certain values of the coordinates (x;) and also only certain values
of momenta (p;, cf. the Maxwell distribution) are reached, and thus only a part of the
phase space is sampled. The phase space density p(7,p) gives the probability to find
a system at positions 7 and momenta p. Now, since we force the dynamics to generate a

canonical ensemble, we know the following:



st

FIG. 29: Complex energy landscape F(x,p). Note that the p-axis is not shown; for p = 0, the
system ‘lies’ on the potential energy curve (black line); for p > 0, various trajectories (sampling

various phase-space volumes) are accessible indicated by the blue and red curves.

e Every point in the phase space has potential energy depending on the coordinates &
(V = V(Z)), coming from the force field, and kinetic energy related to p. This way,

every point (7, p) in the phase space is assigned a certain energy value.

e From the canonical distribution we know that the probability to find the system in a

state with energy F is

) = ) = e [-ET (VIL13)

e To obtain the partition function @), we now have to substitute the summation (in the

discrete case) by an integral over the entire phase space:

Q= / exp{ k;ﬁ} (VIL.14)

The canonical distribution function gives the probability of finding the system at a point
(7,p) in the phase space. Typically, the system will be only sampling a part of the phase
space, with non-zero probabilities, as shown schematically in Fig. 30.

At the start of an MD simulation, we only know the form of the potential (force field) and
kinetic energy. The fundamental aim of MD simulations is to render the correct
phase-space density. Then, we obtain the thermodynamic potentials U, H etc. as time
averages, if the simulation is ergodic. However, this holds only if the phase-space density
is truly that of the canonical ensemble (if the simulation sampled the canonical ensemble

correctly); otherwise, the derivations in the last chapter would not be valid!



FIG. 30: Part of the phase space, sampled during the dynamics. Right: example of a classical

harmonic oscillator.

Thus, we have the following agenda:

e Perform a MD to get a trajectory in phase space. We have to set up the simulation
in order to sample the canonical ensemble; for instance, we have to choose the right
thermostat! Only then will the distribution of points of the trajectory in the phase

space be the same as that given by the canonical distribution.

e Now we can use the ergodic theorem: The time series we get can be used to evalu-
ate time averages of thermodynamic quantities, which will be equal to the ensemble

averages of those.

In quantum chemistry, we commonly use both the discrete and the continuous situation,
to compute thermal corrections to the total energy E in order to get H, S, F or GG. Here,

we consider the two situations as follows:

e If we have simple molecules (like benzene) with only one local minimum of energy, we
can use the harmonic approximation. The energy is given by the ground state energy
of the molecule plus the translational, rotational and vibrational contributions to the
energy. From the vibrational Hamiltonian we compute the Boltzmann distribution,

from that the partition function and then in turn the thermodynamic potentials.

e For molecules where a multitude of local minima can be reached, a single minimum
does not make sense any more. Here, we perform MD simulations to sample the phase
space appropriately and evaluate the time averages of the thermodynamic quantities

of interest.2®

28 These will be equal to the ensemble averages due to the ergodic theorem.



D. Vibrational contribution to the thermodynamic functions

Consider a simple molecule with one or only a small number of well characterizable
minima. For one of the minima, we can calculate the electronic energy (here: the force field

energy), the translational, rotational and vibrational energy, i.e. we have:
E = Eel + Etrans + Erot + Evib (V1115)
The partition function follows as

Q = exp [_B (Eel + Etrans + Erot + EVib>:| _
— eXp[—ﬁEd] . exp[_ﬁEtrans} . exp[—ﬁEmt] X exp[—ﬁEVib] _
_ Qel . Qtrans . Qrot . Qvib (V1116)

Since we often need In (), we have:

InQ =InQ +1In Q"™ + In Q™" +In Q"™ (VIL17)

1.  Electronic states

We usually consider the molecule to occupy the ground electronic state only, as the
electronic excitation energy is quite high. Then, we set the ground state energy arbitrarily

to zero (E°(0) = 0) and the electronic partition function is equal to unity:
Q' = exp[-BEY0)] + exp[-BE ()] +...~1+0+...=1 (VIL.18)

This unity may be neglected in the product in Eq. VIL.17.

2. Translational and rotational contribution

These contributions will not discussed in detail. They are calculated for the quantum-

mechanical particle in a box and for a quantum-mechanical rotator. One obtains

3

yrrans = ksT (VIL.19)
Ut = ngT (VII.20)

For both kinds of motion, also entropic contributions can be calculated. With those, we can

estimate free energies.



3. Vibrational contribution

To get this contribution, we have to optimize the geometry of a molecule and calculate
its vibrational frequencies wy. Each normal mode represents one harmonic oscillator k. For
example, a water molecule has three modes, £ = 1,2,3. Every harmonic oscillator has

energy levels

1
B = (m+ 5) - b (VIL.21)

where E = %ﬁwk is called the zero point vibrational energy. Let us evaluate the partition

function of one harmonic oscillator:?
Qr = T;)exp [—ﬁ (m~|— 5) hwk} = exp {—Eﬁfwk} -n;)exp [—Pmhwy]| =

exp [— 5 8hw]

= VII.22
1 — exp [—Fhwy] ( )
We can then derive the internal energy Uy
1
@k = —5Fhw —In [1 — exp[—Bhw]] (VIL.23)
_ — “hwn — =hw | =+ ————(VI1.24
o op 2 (1 — exp[— ] W2t el — 1) Y

We have to do this for the N — 6 vibrational degrees of freedom of the molecule — each

molecule thus consists of N — 6 harmonic oscillators. We then get for the internal energy

N—6 N—6 1 1
U= U, = hop | =+ ————— VII.25
Y= X (5 ey 1) vz
The zero-point vibrational energy contributions are not temperature dependent, and they

are usually added to the electronic part of the energy (see above), so that the vibrational

part of the internal energy is defined merely as

N—6 B
U = (—’“) VIL.26
kz:; exp|Shwy| — 1 ( )
and for the corresponding entropy contribution and the Helmholtz free energy we find
) ) Uvib N—6 mk
S = kpIn Q" 4+ — = ———————— —In [l — exp[—fhw VIIL.27
snQ™ + = 3 (g~ el ) (V27
N-6
P = —kpTInQ =Y kpTIn [l — exp[—Bhw;]] (VIL.28)
k=1

29 In the last step, we use the formula for the sum of geometric series (3, 2% = 12-).



4. The PV term

To obtain the enthalpy H, we have to add the PV term to the internal energy. This term

would be difficult to estimate unless we did not adopt the approximation of ideal gas:
PV = NkgT (VIL.29)
Then, we obtain the enthalpy and the Gibbs free energy:

H = U+pV =U+ NkgT (VIL30)
G = F+pV =F+ NkgT (VIL31)

Many quantum chemical as well as molecular mechanics programs (like Gaussian, respec-
tively CHARMM) perform a calculation of the thermal contributions by default, whenever
vibrational analysis is requested. (This is because the calculation of vibrational frequencies
is the most time consuming step and the evaluation of thermodynamic functions is done

virtually ‘for free.”)

E. Aiming at free energies

For a molecule with many conformations, we have to approach the phase-space density
with MD simulations (7= {ry,...,rsn}, = {p1,...,p3n}):

exp[—BE(7, p)]
Q

which is the (canonical) probability of finding the system at the point (7, p).

(7 ) = (VIL.32)

The central point now is, how long an MD simulation we can perform. If we integrate
the equations of motion for 1 ps, we will have 1,000 points in the trajectory; if we extend
it to 1 ns, we already have a million points etc. Here, a nanosecond is close to the limit of
what can be done!

Imagine we have simulated for 1 ps: Then, we will barely have sampled the points (7, )
for which p(7,p) < ﬁ, meaning that any points with high energy will hardly be reached,

while the low-energy region may already have been sampled very well.

We get a problem if we are willing to calculate the averages:

U=(E)= Z E(F,p) - p(7, ) (VIL33)



FIG. 31: High-energy points B and C, which are badly sampled during the MD

Here, p(Z, p) tells us the relative probability of ‘visit’ of the particular point (7, p), i.e. how
often the MD trajectory passes through this point. If we do not sample long enough, p will
vanish for points with large energies F(7,p), and we will miss these large energies in the
average.

One could think, that since we miss large values, the average of any quantity will be
systematically wrong. However, for the internal energy this is not very serious, because the

canonical probability distribution

p(7,P) = eXp[_%E<F’m] (VIL34)

is very small if the energy is high, and the neglect of such points brings on no error.

For free energies, however, the situation is much worse, as we can write

- [ explPE(.§) - expl-BE(F. 7)] dFdp] _
Q

— ksTln { / / exp|BE(F, P)] - p(F, P) dFdﬁ} “Inec (VIL35)

1
F = —kBTan = kBTln@ = kZBTlIl [

(where the complicated integral in the numerator on the first line is just a resolution of the
integral of unity, which corresponds to ¢™! = (872V)¥; the canonical probability distribution
p was cast).

Now, we have a real problem, since the large energy values enter an exponential term in
the calculation of the free energy; the high-energy regions thus may contribute significantly.
So, if we have too few points in these high-energy regions, we may find large errors in the

calculated averages. Therefore, a really good idea is needed here to improve the sampling.



VIII. ANALYSIS OF THE SIMULATION
A. Thermodynamic properties

As explained in detail earlier, we are able to obtain time averages of thermodynamic
quantites from MD simulation. As long as the simulation is ergodic, these correspond to the
ensemble averages, which are the values observed (in an experiment).

Some quantities may be evaluated directly, like the total (internal) energy:
U= (E), (VIII.1)

An interesting point is that the magnitude of fluctuations of certain quantities determines
other thermodynamic properties of interest. So, the isochoric heat capacity is given by the

variance of total energy:

_ (U _ op  (E*) - (E)
Cy = (6_T>V e (VIIL2)

Using this expression, we can obtain the heat capacity of the system in a very elegant way

from a single NVT simulation at a given temperature.

B. Structural data
1. Single molecule immersed in solvent

In the area of biomolecular simulation, we usually deal with a single solute molecule
(protein, DNA) immersed in solvent. The solute molecule is then the central object while our
interest in the solvent is merely secondary. In such a case, we obviously wish to characterize
the structure of the solute.

A common way to do so is to calculate the average structure of the molecule. The
coordinates of every atom 7; are obtained as the arithmetic mean from the snapshots n

saved along the MD trajectory:

N
= nz:% 7, (VIIL3)

This is a very clear and simple concept, which often yields a reasonable result. However, it

may be problematic in some situations.



Imagine there are freely rotatable single bonds in the molecule, e.g. methyl groups in
thymine (DNA) or in alifatic side chains (proteins). Then, be averaging of the coordinates,
all three hydrogens of the methyl groups collapse to a single point, due to the free rotation
of the group. This is just a minor issue; (not only) for this reason, the hydrogen atoms are
usually excluded from the structure analysis, which is the restricted to the heavy atoms (C,
N, O etc.).

A more serious issue would come up if the entire molecule rotated in the box from the
initial orientation to another, in the course of the simulation. Then, the average structure of
the molecule would be complete nonsense. To remedy this, the calculation of average struc-
ture usually involves the fitting of every snapshot to a reference structure®® — the molecule
(regarded as a rigid body) is translated and rotated so that its RMS deviation from the
reference structure is minimized. Not until then are the coordinates taken to the sum in
Eq. VIIL3.

The most unfavorable situation comes up if the molecule does not oscillate around a
single structure. This may happen if the free energy surface (FES) features several available
minima, which correspond to different structures. Then, the molecule will assume all these
structures for certain periods of time, and the averaging of coordinates will most likely lead
to an absurd structure, not corresponding to any of the minima on the FES. In such a
case, it may be desirable to perform the averaging of structure on separate intervals of the
trajectory, where the individual minima are being sampled.

The average structure of the molecule provides valuable information, however of an in-
herently static character. The development of the structure in time may be followed very

simply by evaluating the root mean square deviation (RMSD)
1 & 2
2 — —ref
RMSD? = N ;:1: |73 (t) — 7| (VIIL.4)

of the structure in time ¢ with respect to a reference structure; this may be the starting

structure, the average structure or any other meaningful geometry of interest.?!

Another similar quantity is the root mean square fluctuation (RMSF) of atomic positions,

30 The starting structure may be taken as the reference.
31 For instance, we may wish to compare the structure of a peptide to the idealized geometries of a-helix

and (-sheet, or that of DNA to the idealized A-DNA and B-DNA.



or in other words the square of mean variance of atomic positions
RMSF; = (|7 — (7)[”) (VIIL5)

for the atom 7. This value tells us how vigorously the position of every individual atom fluc-
tuates. RMSF may be converted to the so-called B-factor, which is an observable quantity
in diffraction experiments (X-ray etc.):

_8

B;
3

72 - RMSF? (VIIL6)

Typically, the structure files deposited in the PDB contain these B-factors for all atoms.
However, the comparison of B-factors obtained from a simulation with those from diffrac-
tion experiments may not be quite straightforward, as the simulation parameters and the
experimental conditions may differ largely.

It is worth mentioning several further means of structure analysis which are used above
all in the studies of proteins. It is possible to measure simply the distances of the individual
amino-acid residues, represented for instance by their centers of mass or by the C* atoms.
This way, a distance matriz is constructed, which may be either time-dependent or averaged
over the simulation. Distance matrices found their use in bioinformatics, and various tool
have been developed for their analysis.

A classical means of analysis of protein structure is the Ramachandran plot — a two-
dimensional histogram of dihedral angles ¢ and 1 along the protein backbone. Simulation

programs usually contain tools to generate Ramachandran plots automatically.

2. Fluids

If we wish to describe the structure of a fluid (liquid or gas), for example pure argon or
water, we will have to make use of another concept. Rather than one prominent molecule,
we have many molecules in the system which are all equally important.

A useful way to describe the structure of such a system are the radial distribution func-
tions. These describe how the molecular (or atomic) density varies as a function of the
distance from one particular molecule (or atom). Consider a spherical shell of thickness or

at a distance r from a chosen atom; the volume of the shell is given by

SV = dmr? - Or (VIIL7)



We count the number of molecules (atoms) present in this shell n, and divide this by dV to

obtain a kind of ‘local density’ at the distance r. The pair distribution function g(r) is then

obtained by dividing by the ideal-gas distribution (which is the macroscopic density):

n/oV
p

g(r) = (VIILS)

g(r) is a dimensionless number which determines how likely it is to find a molecule (atom)
in the distance of r from the reference particle, compared to the homogeneous distribution

in the ideal gas.
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FIG. 32: Radial distribution function for a Lennard-Jones fluid near the triple point (left) and for
a hard-sphere fluid (right). Reprinted from Nezbeda, Kolafa and Kotrla 1998.

A typical example of ¢(r) for liquid water as well as hard spheres is shown in Fig. 32. The
function vanishes on short distances, as the molecules cannot intersect. A high peak follows

32 In

on roughly the van der Walls radius, where the interaction of molecules is favorable.
other words, it is much more likely to find two molecules on this distance in a real liquid
than in the ideal gas. On longer distances, several shallow minima and maxima are found,
and g(r) converges to unity at large distances — there, the probability of finding a particle
is uniform, the same as in the ideal gas.

The importance of radial distribution functions consists not only in the information about

the structure. If the pairwise additivity of forces is assumed, then thermodynamic properties

can be calculated using g(r) and the potential energy u(r) and force f(r) of a pair of particles.

32 However, such a peak would be present in the case of hard spheres (which do not feature any attractive

interaction) as well.



For example, the corrections to the ideal-gas values of total energy and pressure follow as

E — gNkBT = 27TNp/ r?u(r) g(r) dr (VIIL.9)
0
2m 5 7 3
P—pkgT = 3P ref(r)g(r)dr (VIII.10)
0

The Fourier transform of the pair distribution function is the structure factor, which may

be measured in diffraction experiments (X-ray of neutron diffraction).

C. Monitoring the equilibration

Every simulation aimed at producing structural and/or thermodynamic data has to be
performed in the termodynamic equilibrium. Therefore, the production simulation shall
always by preceded by an equilibration run, in order to provide the system a possibility
to achieve the equilibrium. The equilibration should proceed until the values of certain
monitored properties become stable, i.e. until these does not exhibit a drift any more.

It is convenient to monitor the thermodynamic properties that are being evaluated and
written out by the simulation program. These are usually the potential energy and the
temperature; in case of NPT simulations, the pressure or the density should also be taken
into account.

Apart from the thermodynamics, the structure of the system must be taken care of. Many
simulations of the liquid state are being started from a configuration that exhibits some
artifical regularity, like that of the crystal lattice.® This makes also the thermodynamics
wrong, because the artifical regularity causes the entropy to be too small. Anyway, the
equilibration must continue until such structural regularities are washed out. To guarantee
this, we need appropriate quantities to characterize the regularity of the structure.

A measure of translational order/disorder was proposed by Verlet in the form of an order

parameter \

N
1 Az,
A= % A= ;1: cos { iﬂ etc. (VIIL11)

where a is the length of the edge of the unit cell. In the ideal crystal, A assumes the value of

one, while it drops to zero for a completely disordered structure. Thus, in an equilibration,

33 Note that we usually fill the simulation box with water in the form of small and identical ‘bricks’.



one should see A to decrease to zero and then fluctuate around zero.

Another useful quantity may be the mean squared displacement (MSD) given by

1 N

MSD = ; |7 (t) — 75(0)] (VIIL.12)

which should increase gradually with time in a fluid with no specific molecular structure,

whereas it would oscillate about a mean value for a solid.
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FIG. 33: The course of equilibration of liquid argon being followed by the Verlet order parameter

(left) and the mean squared displacement (right). Reprinted from Leach: Molecular Modelling.

D. Time-dependent properties
1. Correlation functions

Suppose there are two physical quantities  and y, which may exhibit some correlation.
This term indicates a relation of the quantities, opposed to independence. To quantify corre-
lation, several kinds of correlation functions or correlation coefficients have been developed.
Most common are the Pearson correlation coefficients, which describe the potential linear
relationship between the quantities.

Typically, we consider two quantities fluctuating around their mean values (z) and (y).
Then, it is of advantage to consider only the fluctuating part and introduce a correlation

coefficient pg,

_ ((z —(2)) - (y = (¥)) _ cov(z,y) VIIL
P Vil —(2))?) - (y— )2 a0y I

where cov(z,y) stands for the covariance of  and y, which is the generalization of variance.
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FIG. 34: Correlation of two quantities (on the x and y axes) and the coresponding correlation

coefficients. Downloaded from WIKIPEDIA.

In an MD simulation, we obtain the values of various properties at specific times. It
can happen at some point in time, that the value of a property z is correlated with the
value of the same property at an earlier time point. This behavior may be described by the

autocorrelation function (ACF) of this property

(@(t) - 2(0)) _ Ja)x(t +1)dt!
(2(0) - 2(0)) Ja(@) e

which denotes the correlation of the same property x at two time points separated by ¢, and

(VIIL14)

c(t) =

the denominator (x(0) - (0)) normalizes ¢, so that it takes values between —1 and 1.

2. Autocorrelation of velocity

The autocorrelation function indicates, to which extent the system retains a ‘memory’ of
its previous values, or conversely, how quickly it takes for the system to ‘forget’ its previous
state. A useful example is the velocity autocorrelation function, which tells us how closely
the velocities of atoms at a time point ¢ resemble those at a time 0. It is a good idea to

average the ACF of velocity over all atoms ¢ in the simulation:

N
1 (G;(t) - 4;(0))
c(t) = — o (VIIL.15)
N ; (@(0) - 5i(0))
Typical ACF starts at the value of one in t = 0 and decreases afterwards. The time needed
for the system to lose the autocorrelation of the quantity (velocity) whatsoever is often called

correlation time or relaration time T,:

- / oL (VIIL16)
0

There is a statistical issue related to the evaluation of properties of interest. In order

to obtain correct average values of properties related to velocity (i.e. dynamical properties),



it is necessary to calculate the average of uncorrelated values. And now, the longer the
relaxation time is, the fewer values can we take from the simulation of a certain length, to
obtain correct averages. On the other hand, if the quantity (velocity) has short relaxation

time, then it is possible to take many values for averaging.

Velocity correlation function

Time (ps)

FIG. 35: Velocity autocorrelation functions for liquid argon (densities in g-cm™3). Reprinted from

Leach: Molecular Modelling.

Fig. 35 shows the velocity ACF from the simulations of a liquid at two different densities.
At lower density, the ACF decreases gradually to zero. Unlike that, at higher density, the
ACF comes faster to zero and even assumes negative values for a period of time. This means
that the velocities point in the direction opposite to that at ¢ = 0, which can be interpreted
by the concept of a ‘cage’ structure of the liquid. The initial decay of ACF is slower
than predicted by the kinetic theory, and this result together with its (slightly complex)
explanation represents one of the most interesting achievements of early simulations.

There is a quite straightforward connection between the velocity ACF and the transport
properties of the system. One of the Green—Kubo relations expresses the self-diffusion

coefficient D by using the integral of the velocity ACF:34

D- 1/00 (5 (1) - 7,(0)), di (VIIL17)

Diffusion coefficients are very interesting observable quantities, and it is an important point
that we are able to obtain them from MD simulations. Interestingly, D may be obtained

from another property easily accesible in the simulation — the mean squared displacement

34 Recall Fick’s laws of diffusion for flux J and concentration ¢: J = —Dg—i, % = D%



(see Eq. VIII.12). The respective Einstein relation reads

() — 7 (0)]),
%}im (17 (1) tr( ), (VIIL18)

3. Autocorrelation of dipole moment

Velocity is an example of a property of a single atom. Contrary to that, there are
quantities that need to be evaluated for the entire molecular system. Such a property of the
system is the total dipole moment, which is the sum of the dipole moments of all individual
molecules 7 in the system:

N

fron(t) = > ili(t) (VIIL19)

i=1
The ACF of total dipole moment is given as

<ﬁt0t <t> : ﬁtot(o»
<ﬁtot(0) ' ﬁtot(0)>

This quantity is very significant because it is related to the vibrational spectrum of the

cu(t) = (VIIIL.20)

sample. Indeed, it is possible to obtain the infrared spectrum as the Fourier transform of
the dipolar ACF. An example is presented in Fig. 36. Rather than sharp peaks at well-
defined frequencies (as is the case of molecules in the gas phase), we see continuous bands,
as the liquid absorbs at many frequencies in a broad interval. The frequencies correspond

to the rate at which the total dipole moment is changing.
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FIG. 36: Infrared spectra for liquid water. Black dots — experiment; thick curve — result from

classical MD; thin curve — result with quantum corrections. B. Guillot, J. Phys. Chem. 1991.



4. Principal component analysis

It is possible to perform covariance analysis on the atomic coordinates in MD snapshots.
This principal component analysis (PCA), also called essential dynamics uses the symmetric

3N-dimensional covariance matrix C' of the atomic coordinates r; € {z;, v;, z: }:

Cij = ((ri = (rs)) - (r; = (rj))), or (VIIL.21)
Ciy = (Vmi(ri = (i) -/ (r5 = (13))), (VIIIL.22)

The latter definition is mass-weighted, with m; being the masses of the respective atoms.

Standard diagonalization techniques can be used to obtain the eigenvalues and eigenvec-
tors of this matrix. The eigenvectors the correspond to the principal or essential modes of
motion of the system, an analogy of the normal modes; the respective eigenvalues may be
expressed in terms of quasi-harmonic frequencies of these modes.

The first few eigenvectors with the largest eigenvalues (and thus the lowest frequencies of
as little as 1 em™!) usually correspond to global, collective motions in which many atoms are
involved. In the example of double-stranded DNA, the three weakest modes (see Fig. 37) are
the same as would be expected for a simple rod made of a flexible material — two bending

modes around axes perpendicular to the principal axis of the DNA, and a twisting mode.
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FIG. 37: First three principal modes of motion of double-stranded DNA (left) and their frequencies

for two different sequences (right). Reprinted from S. A. Harris, J. Phys. Condens. Matter 2007.

Not only does this analysis give us an idea of what the modes of motion look like, it can
also be used in thermodynamic calculations. The obtained vibrational frequencies may be

used to evaluate configurational entropy of the molecule, which is otherwise hardly accessible.



E. Appendix — Fourier transform

The Fourier transform (FT) is an operation that transforms one function of a real variable
into another. In such applications as signal processing, the domain of the original function
is typically time and is accordingly called the time domain. That of the new function is
frequency, and so the FT is often called the ‘frequency domain representation of the original
function.” It describes which frequencies are present in the original function. In effect, the
35

Fourier transform decomposes a function into oscillatory functions.

FT of a function f(z) in the domain of frequency w is given by the expression
Flw) = / f(@) - exp[—iwa] de (VTIL.23)
where the connection to oscillatory functions is evident by noting that

exp [—iwx] = cos [wz] — isin [wx] (VIII.24)

Fourier transform
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FIG. 38: Example of the Fourier transform (right) of a signal periodic on a time interval (left).

F. Exercises

e What does the radial distribution function of the ideal gas look like?

e What does the radial distribution function of an ideal crystal look like?

35 The term Fourier transform refers both to the frequency domain representation of a function and to the

process or formula that “transforms” one function into the other.



IX. FREE ENERGY SIMULATIONS

When searching for a physical quantity that is of most interest in chemistry, we could
hardly find anything more appropriate than free energies — Helmholtz F' or Gibbs G. Truly,
these represent the holy grail of computational chemistry, both for their importance and
because they are difficult to calculate.

These difficulties were hinted at in one of previous chapters. Recall that we can write

F= kTl / / explBE(F, )] - p(F, ) dF d + ¢ (IX.1)

The problem is that the large energy values (far from the minimum of energy) enter an
exponential term, so that these high-energy regions may contribute significantly to the free
energy F'. So, in a simulation, if we have too few points in these high-energy regions of the
phase space (undersampling), we may introduce sizeable errors in the calculated averages.
There are two fundamental approaches to overcome this difficulty: free energy pertur-
bation and thermodynamic integration. Also, several computational tricks may be used for
particular types of reactions, like alchemical simulations or umbrella sampling. An impor-
tant observation is that it is not necessary to find the absolute value of the free energy. When
considering a chemical reaction,?¢ it is important to know merely the free energy difference

(AF, AG) between the involved states (reactant A and product B).

A. Free energy perturbation (FEP)

For these states with energies E4(7, p) and Eg(7, p), and partition functions Q4 and @,

free energy difference may be derived as

B B Qp [[ exp|-BEg] drdp
AF = Fg—Fy=—kgTIn O = —kgTIn ffeXp[—ﬁEA] A dp
exp[—[Ep| exp[fE 4] exp[—(FE | drdp

[[ exp[—BE 4] dFdp
— —kaTln [ [ expl-0Es]xpl3Ea) - pa(7 ) A7 7

= —kgT'In ff

— kTl [ [ expl-0(Es ~ En) - pa(rip) drdy (1X.2)

36 in a very general sense of a reaction that need not involve chemical bonds being created or broken — ligand

binding a protein, passage of a molecule through membrane, or protein folding are reactions as well



The integral has the form of an average of a property S taken with the phase space

density of state A

S)a = [[ s patparas (1x.3)
and so we can write equivalently

AF(A — B) = —kgT'In (exp|—F(Ep — Ea)]) 4
AF(B — A) = —kgT In (exp|—B(Es — Ep)]) 5 (IX.4)

which is the free energy formula by Zwanzig (1954) and the essence of the FEP method.
Thus, in principle, it is possible to perform a simulation of state A and obtain the free energy
by averaging the exponential of the difference of energies of states B and A, or vice versa.
Practically, we start an MD in state A to get the phase space density p4, and then calculate

the difference between the energies of states B and A along the trajectory.

e Free energy of deprotonation of an amino acid side chain in a protein. We would run the
dynamics for the protonated species, and then evaluate the energy difference between
protonated and unprotonated species to get the average of exp|—3(Ep — E4)]. This
would only work if the conformations of the protein, and above all the configuration of
water molecules, sampled along the MD were very similar with both forms. Usually,

this is not the case.

e The ionization of a molecule. Again, we would perform a simulation of the neutral
species and evaluate the energy differences. Alas, the configuration of water would be

quite different here, too, leading to a very small overlap of phase space densities.
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FIG. 39: Deprotonation of an amino acid (left) and ionization of a molecule (right), both in water.

Once again, let us emphasize the advantage of FEP over the direct evaluation of free

energies. In the latter case, two simulations would be performed, one for each state A and



B, and the free energy difference would follow (using Eq. IX.1) as
AF(A — B) = kgT In (exp[BEB]) 3 — ksT'In (exp[BE4]) 4 (IX.5)

Here, note that the free energy difference is very small, of a few kcal/mol, while the total
energies are very large, of hundreds or thousands kcal/mol, if the solvent or the like is
included. So, we have to subtract two large numbers in order to get a small one. However,
a small relative uncertainty (error) of the large values would be huge in comparison with
the possibly small resulting free energy difference. Therefore, it is necessary to obtain these
large values extremely accurate, which would mean the necessity to perform exceedingly
long MD simulations — so long that we will never be able to afford it!

That is why we avoid performing individual simulations for the end states and rather
evaluate the free energy difference directly in one simulation. Then, it is no longer necessary
to sample the regions of the molecular system which do not change and are not in contact
with the regions that are changing, as these do not contribute to the energy difference
Ep — E4. The region of phase space that has to be sampled thoroughly is much smaller,
and the necessary simulation length may become feasible.

For the following, the concept of overlap in phase space or overlap of phase space densities
is crucial. In a straightforward way, the more similar the states A and B are, the more
similar are also the corresponding phase space densities, and they may exhibit an overlap,

see Fig. 40. If the phase space densities for states A and B are similar (overlapping, Fig. 40

FIG. 40: Large (right) and no (left) overlap of phase space densities corresponding to two states.

right), then the low-energy regions of state B may be sampled well even in the simulation
of state A, and the free energy difference AF(A — B) in Eq. IX.4 may converge. If this is
not the case (like in Fig. 40 left), then the simulation of state A hardly comes to the region

of phase space where the state B has low energy; this region is undersampled, the averaging



of the energy Ep is wrong, and the calculation will not converge. As a rule of thumb, this

is the case if
|Ep — Eal > kgT (IX.6)

A way to overcome this problem is to insert an intermediate state (designated ‘1) which

overlaps with both A and B, as in Fig. 41. The underlying idea is to make use of the fact

/

FIG. 41: Intermediate state ‘1’ overlapping with state A and B

that free energy is a state function, and so
AF(A— B)=AF(A— 1)+ AF(1 — B) (IX.7)

Therefore, we can perform two MD simulations, one for each of the states A and 1, and
evaluate free energies for the two subprocesses. These may be expected to converge better,
and their sum gives the free energy of A — B:

@ %} _

Qs @
= —kpT'In (exp[—B(Ey — Ea)|) 4 — ksT' In (exp|—B(Ep — E1)]), (IX.8)

AF = —kBTln[

Obviously, it is possible to insert more than one intermediate state between A and B, if

these differ exceedingly. For N intermediate states 1,2,..., N, we obtain

_ @ @ Qs
AF = kBTln{QA o QN}

= — kg7 In (exp[—B(E1 — Ea)]) 4 — kT In (exp[—B(E> — Ev)]), —

— ... kBTln <8Xp[—ﬁ(EB — EN)]>N (IX9)

and we have to perform N + 1 simulations, e.g. of states A,1,2,..., V.



The description of this procedure may sound complicated, but it is implemented in the
common simulation packages in a convenient way. Since we can change the chemical iden-
tities of the atoms or functional groups, this practice is often called computational alchemy.
Typically, one introduces a parameter A\ which ‘converts’ the force-field parameters (i.e. the

Hamiltonian) from these of state A to those of state B:
Ex=(1-)X-Es+X-Ep (IX.10)

e The (solvation) free energy difference of argon and xenon in aqueous solution. The
two atoms differ only in the vdW parameters — the well depth € and the radius . To

transmutate the energy function from that of one species to the other, we interpolate:

ex=1—=X)-ea+X-¢5p (IX.11)
on=(1=XN-0a+X 05 (IX.12)

In the simulation, we start from A = 0, i.e. an argon atom, and change it in subsequent
steps to 1. For each step (called window), we perform an MD with the corresponding

values of the vdW parameters, and calculate the relative free energies.

e A true chemical reaction like HCN — CNH. The situation is more complicated as we
need the topologies of both molecules. Thus, a dual-topology simulation is performed:
we have both molecules simultaneously in the simulation. These two molecules do not
interact with each other, and we gradually switch off the interaction of one species

with the solvent during the simulation while we switch on the other at the same time.
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FIG. 42: Examples of ‘alchemical’ simulations.



B. Thermodynamic integration (TT)

In the last chapter, we have written the energy E as a function of the parameter A. This

means, that the free energy also becomes dependent on A:
F=F(\) (IX.13)

with F/(0) = F(A) and F(1) = F(B). Thus, we can write

LOF(\)

IX.14
oy (IX.14)

AF =F(B)— F(A) = /
with
F(A) = —kgT'InQ(\) (IX.15)

The derivative of I’ rearranges to

T P S " TP S Ny SRR
E(A)__kBTT()\)_ kBTQ()\) 8)\0\)_ kBTQ()\) 6))\//GXP[ BE\] didp =

_ / / 52 x| drdp

E E
— kT ( //a “Xp ﬁ A grag

= // 8E,\p)\ (7, p)drdp = % (IX.16)
oN /[

This is the essence of TI — the derivative of free energy F' with respect to the coupling

parameter \ is calculated as the average of derivative of total MM energy E, which can be

directly evaluated in the simulation. Then, the free energy difference follows simply as

' JOE,
AF_/O <W>AdA (IX.17)

Practically, we perform a MD simulation for each chosen value of \; it is usual to take
equidistant values in the interval (0,1) like 0, 0.05,..., 0.95 and 1. Each of these simulations
produces a value of < > ,» S0 that we obtain the derivative of free energy in discrete points
for A € (0,1). This function is then integrated numerically, and the result is the desired free
energy difference AF.

An example of the TI simulation is shown in Fig. 43. An atom of rare gas (neon) is

dissolved in water; in course of the NPT simulation, the van der Walls parameters of the



neon atom are being gradually switched off by means of the A parameter, so that the atom
is effectively disappearing. The derivative of total energy with respect to A is evaluated for
several (21) values of A ranging from 0 to 1. Eq. IX.17 is then used to obtain the (Gibbs)
free energy difference of the two states: (i) a neon atom in water, and (ii) no neon atom
in water, i.e. outside of the solution in vacuo. Thus, the calculated free energy difference
corresponds directly to the solvation free energy, a quantity which is of considerable value

in chemistry.

Neon atom to nothing, in TIP3P water

equilibration: normality on 85% confidence level. production: error < 5 kJ/mol
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FIG. 43: TI simulation of a neon atom in water being disappeared. See text for explanation.

Finally, let us summarize the features of FEP and TI. Irrespective of the nature of the
studied reaction, both FEP and TI require the introduction of a coupling parameter A\, which
plays the role of the reaction coordinate with A = 0 corresponding to the reactant and A = 1
to the product. The fact that free energy is a state function guarantees the independence
of the result on the chosen path between the reactant and the product, and so it does
not matter if the reaction coordinate corresponds to an unphysical process like a change of
chemical identity of one or more atoms (as is the case in the alchemical simulations).

The remaining open question regards the necessary number of windows in the simulation.
We would like to have as few windows as possible, without compromising numerical precision
of the calculation. In FEP, the assumption is that while simulating the state A, the low-
energy regions of state B are sampled well. The closer the windows are, the better is this
condition fulfilled. On the other hand, the free energy derivative is always evaluated for one
A-value with T1, and the problem present in FEP does not occur here. It is the numerical

integration of the free energy derivative that brings on the numerical inaccuracy of TI.



C. Free energy from non-equilibrium simulations

A major disadvantage of the described methodology — T1 using equilibrium simulations
for discrete values of A — is the very slow convergence of G /O\ once the alchemical change
becomes large. So, it is often possible to describe the mutation of a single amino acid side
chain in a protein provided the structure of the protein remains the same, but this should
be considered a practical limit of the method.

To avoid this problem, the current development of free-energy methods makes use of non-
equilibrium simulations. Here, the usual process of “equilibration” of the system for every
of the selected values of A followed by a “production phase” is not used; a non-equilibrium
simulation consists of n MD steps, where the parameter A starts at 0 and increases by 1/n
in every MD step. This way, the simulation does not describe the system in equilibrium
in any moment, as the external parameter A\ is changing all the time. Whereas a single
simulation of this kind is probably worthless, the remarkable equality by Jarzynski provides

a link between an ensemble of such simulations and the desired free energy:
exp[~BAF] = (exp[-W)) (IX.18)

The true value of free energy AF' is obtained as a special kind of ensemble average, for
the ensemble of non-equilibrium TI simulations yielding “free energies” W. These values
W = fol OFE/OXdA are no free energies whatsoever; instead, they may be called (irreversible)
work. Since no convergence of any quantity is required within a single non-equilibrium
simulation, these simulations may be very short — and this is the actual practice. However,
the sampling problem persists because the largest statistical weight is carried by rarely
occuring simulations (due to the unfavorable averaging in Eq. IX.18).

This sampling issue may be circumvented by exponential work averaging with gaussian
approximation. An ensemble of simulations is performed for the ‘forward” process 0 — 1
as well as for the ‘reverse’ process 1 — 0, and the obtained distributions of forward and
backward irreversible work are approximated by gaussians with mean and standard deviation

Wy, o5 and W, o,, respectively. The free energy is calculated as an average of values
L,

1
AF, = —Wr+§ﬁaf (IX.19)



A more general expression (than the Jarzynski equality) is the Crooks fluctuation theorem
(CFS), according to which the distributions of forward and reverse work are related like

Py(W)

b1 = SplA0V — AF) (IX.20)

Then, once we have obtained well-converged distributions Py and P, it is possible to apply
Bennett’s acceptance ratio for an equal number of forward and reverse simulation; the free

energy follows from

<1 + exp[ﬁ(lw — AF)] >f N <1 + exp[—ﬁl(w — AF)] > (IX.21)

It is possible to apply CFS more directly. A closer look at Eq. IX.20 reveals that the free
energy corresponds to the value of work W for which the probabilities Py and P, are equal
— to the intersection point of the distributions. To determine this point readily from the
distributions may be difficult and a source of large errors if the overlap of the distributions
is very small. Again, this issue can be solved by the assumption of normal distribution
of the forward and reverse work, which was proven for a system with a large number of
degrees of freedom. The procedure thus requires to perform a number of forward and reverse
simulations sufficient to perform a good-quality gaussian fit to the resulting distributions of
irreversible work. The free energy is calculated directly as the intersection points of these

gaussian curves.

:
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FIG. 44: The Crooks gaussian intersection (from Goette and Grubmiiller 2009).



D. Thermodynamic cycles

Quite often, we are interested not in the absolute free energies and not even in the reaction
free energies, but rather in the difference (A) of reaction free energies (AF') corresponding
to two similar reactions. These may the be denoted as AAF or AAG.

Consider as an example the binding of an inhibitor molecule I to an enzyme E, as shown
in Fig. 45 left. Usually, we are interested in differences of binding free energies, for instance

of an inhibitor I to two very similar enzymes E and E':

E+1=E AG
E+1=FEI AG, (IX.22)

The binding of the inhibitor can induce large structural changes in the enzyme, and it
would be very difficult (if not impossible) to describe this reaction in a simulation both
correctly and efficiently at the same time. So, significant errors would seem to be inevitable.
A way to solve this would be to simulate not the reaction of binding but rather the alchemical
transmutation of enzyme E to E/. As we consider the enzymes to be very similar,?” it is
plausible to assume the structure of complexes EI and E'I to be similar as well. Then, the

alchemical simulation may well be successful. As free energy is a state function, the sum of

’ .

AG2 AG1 AG2

I AG4

FIG. 45: Examples of the thermodynamic cycle.

free energies around a thermodynamic cycle vanishes (e.g. clockwise in Fig. 45 left):

37 Imagine E/ to be derived from E by a mutation of a single amino acid, e.g. leucine to valine.



The difference of binding free energies then follows to be equal the difference of free energies

calculated in alchemical simulations:
AAF = AF, — AF, = AF; — AF, (IX.24)

Similarly, it is possible to calculate the free energy difference of binding of two similar
ligands to the same enzyme (Fig. 45 right), or the difference of solvation energy of two
similar molecules. In the latter case, two alchemical simulations would be performed: one

in vacuo and the other in solvent.

E. Potentials of mean force (PMF) and umbrella sampling

Sometimes, we wish to know not only the free energy difference of two states (the reactant
and the product), but rather the free energy along the reaction coordinate q within a certain
interval; the free energy is then a function of ¢ while it is integrated over all other degrees of
freedom. Such a free energy function F'(q) is called the potential of mean force. Examples
of such a reaction coordinate ¢ may be the distance between two particles if the dissociation
of a complex is studied, the position of a proton for a reaction of proton transfer, or the
dihedral angle when dealing with some conformational changes.

To separate the degree of freedom spanned by the reaction coordinate, we perform a
coordinate transformation from 7 = (ry,re,...,r3n) to a set (uj,us,...,usy_1,q), where
the (3N — 1)-dimensional vector @ represents all remaining degrees of freedom, and we can

write
dr'=du - dq (IX.25)

Looking for the free energy at a certain value of ¢, all remaining degrees of freedom are
averaged over (or ‘integrated out’). One could think of performing an MD simulation and
sampling all degrees of freedom except for q.

An example would be the free energy of formation of an ion pair in solution, as shown in
Fig. 46. An MD simulation would be performed to calculate the free energy for every value
of the reaction coordinate q.

The free energy is given by:

F =—kgTIn // exp|—BE(r, p)| drdp (IX.26)



FIG. 46: Nat and Cl~ in water solution. The distance between the ions is the reaction coordinate

q, and all other degrees of freedom (water) are represented by @ and are free to vary.

If we wish to evaluate an expression for a coordinate ¢ taking a certain value qq, it is
convenient to use the Dirac delta function,®® §(q — qo). With that, we can write the free

energy for the fixed reaction coordinate ¢y as

Flao) = ~kaT1n | [ 6a ~ o) expl-BE( 7] dpdidg
— —kgTln [Q - // 5(q—q0)eXp[_ﬁE(F’ﬁ” dﬁdﬁdq}

Q
kT [Q - / / 5(q— @) - o7, ) dﬁdﬁdq]

— kT [Q- (5(q - )]

= —kgTInQ — kgTn (6(q — qo)) (IX.27)

How to interpret this? p(7, p) is the probability, that the system is at the point (7, p). Then,

Play) = / / 5(¢ — ) - p(7, ) dFdi = (6(g — o)) (IX.28)

is the probability that the reaction coordinate ¢ in the system takes the value of ¢q , because
the integral proceeds over the whole phase space and the delta function ‘cancels out’ all
points, where the reaction coordinate is not equal qy! So, the integration collects all points

in phase space, where the reaction coordinate has this specific value.

38 This is a generalized function representing an infinitely sharp peak bounding unit area; §(z) has the value

of zero everywhere, except at x = 0 where its value is infinitely large in such a way that its integral is 1.



What would it work like in the example of the ion pair? We perform an MD simulation
for the system, and then count how many times the reaction coordinate takes the specified
value, in other words we calculate the probability P(qo) of finding the system at .

Then, the free energy difference of two states A and B is:

Fgp—Fy = —kgTInQ — kgTIn (6(q — gp)) — (—ksTInQ + kgT'In (5(q — qa)))
(6(q¢ — qB))
<5(q - CIA)>

. L Plas)
=~k Tln ot (IX.29)

which is actually the known definition of the equilibrium constant P(B)/P(A).

= —kBT In

So, the task is clear: perform a MD, specify a coordinate, and then just count, how often
the system is at special values of the reaction coordinate. The ratio of these numbers gives

the free energy difference!

? A A

(R

FIG. 47: Energy profile and probability distribution along the reaction coordinate. Note the

undersampled region of the barrier.

This is very good, in principle. But, we also know the problem: If we there is a high
barrier to be crossed along the reaction coordinate to come from A to B, a pure (unbiased)
MD simulation will hardly make it,>® and even if it does, the high-energy region (barrier)
will be sampled quite poorly.

Then, a straightforward idea is to apply an additional potential, also called biasing po-

tential in order to make the system spend a larger amount of time in that (those) region(s)

39 In other words, the ergodicity of the simulation is hindered.



of phase space that would otherwise remain undersampled. This is the underlying principle
of the umbrella sampling.*® The additional potential shall depend only on the reaction co-
ordinate: V' = V(q).*! Then, what will the free energy look like in such a biased case? Let

us start with the previously obtained expression:

[ [ 5(q — o) exp[-BE] dFdﬁ}
i [[ exp|—BE] dFdp
[ [ (g — qo) exp[BV] exp[-B(E + V)] di'dp [ exp[-B(E + V)] dfdﬁ]
[[ exp[-B(E + V)] drdp [[ exp|—BE]dFdp
[[ exp|—B(E + V)] drFdp ]
xp[BV]exp[—B(E + V)] drdp

F(q) = —kgTIn

= —kJBTll’l

= —kgT'In | (6(q — QO)eXp[ﬁVDEJrV ffe

= —kgTln —<5(C] — q0) exp[BV]) g,y m]
= —kgTIn —exp[ﬁV(QO)] (0(q = q0)) grv m]

= —kTIn{0(q — q)) gy — V(o) + ksT'In(exp[BV) g,y
= —kgT'In P*(q0) — V(qo) + kT In (exp[BV]) 5.1/ (IX.30)

giving the free energy as function of reaction coordinate, or PMF in the form
F(q) = —kgTInP*(q) —V(q) + K (IX.31)

This result is very interesting: We have added an arbitrary potential V' (¢) to our system.
Now, we have to calculate the ensemble averages with the biased potential E+V as indicated
by () g.y- We obtain the biased probability P*(q) of finding the system at the value of the
reaction coordinate for the ensemble F + V', which can obviously be very different from that
of the unbiased ensemble P(q). Yet, we still get the right (unbiased) free energy F'(q), once
we take the biased probability P*(q), subtract the biasing potential V' (¢) at the value of the
reaction coordinate and add the term K.

We can use this scheme efficiently, by way of moving the biasing (harmonic) potential
along the reaction coordinate as shown in Fig. 48. In this case, we perform k simulations

with the potentials V), and get:

F(q) = —kgTIn P*(q) — Vik(q) + Kx (IX.32)

40 This should evoke the image of an interval of the reaction coordinate being covered by an umbrella.
41 Tn such a case, (6(q — qo) - exp[BV]) = (6(q — qo) - exp[BV (q0)]) = exp[BV (q0)]-(6(¢ — o)) in the following.
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FIG. 48: Harmonic biasing potentials keep the system in the desired regions of reaction coordinate.

For each of these k simulations, we extract the probability P*(q) for every value of ¢ and
easily calculate V*(q). The curves of —kgT In P*(q) — V*(q) for the simulations k and k + 1
differ by a constant shift, which corresponds to the difference of K values, as shown in

Fig. 49. The main task is to match the pieces together. One way is to fit the K} in order

x

E 4 T,
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FIG. 49: The offset of free energy curves between two simulations k and k+1 is given by Ky — K11

to get a smooth total F'(¢) curve. This is possible if the pieces k and k + 1 have sufficient

‘overlap’.
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FIG. 50: Matching of histograms from different simulations

Another, quite involved method is the weighted histogram analysis method (WHAM).

The starting point is the requirement of a perfect match, minimizing the total error. The



unbiased probabilities P(x;) of coordinate x falling into the bin j of the histogram and the

shifts K; are obtained by a self-consistent solution of a set of equations

S ni(x;) exp|—BVi(;)]

P(xj) - N
> imq Ni exp[—=B(Vi(x;) — K;)]
bins
Ki = —kTlogy  P(z;) exp[-AVi(z;)] (1X.33)

J
(for a total of N simulations, i-th simulation contains N; frames, n;(x;) is the number of hits
in bin j in simulation 7). The WHAM procedure is included in a range of modern packages

for MD simulations.



X. QM/MM

The standard force fields are designed to evaluate the energy of the system as fast as
possible, and this requirement makes several quite crude approximations necessary. One of
them is that the topology of the molecule remains the same in course of the simulation,
meaning that the covalent bonds may be neither created nor broken in the simulation.
Then, it is impossible to use such a force field to study the processes that would usually be

designated as chemical reactions.

A. Empirical approaches to chemical reactions

In spite of the mentioned problems, it is not quite impossible to describe a chemical
reaction with a force field. However, this may be done always for a single reaction, or a
restricted class of reactions only, using approximations that are appropriate in the specific
case; still, a generic force field applicable for any reaction is a mere illusion.

A possible way to describe a reaction would be as follows: An existing force field is used
for all of the system, except the bonds that are being broken or created. The bonds involved
in the reaction will then be re-parameterized, using probably a variant of Morse’s potential
or the like. Evidently, such an approach requires an ad hoc model of the molecule, and
considerable effort is likely to be spent by the parameterization.

Also obvious are certain limitations of such an approach. The restrictions on the use
of force field methods are more general than just that of the invariant connectivity of the
molecules. Rather, it is the electron density that does not change at all. It is thus further
impossible (or impracticable at the very least) to use a force field to describe a process
involving charge transfer, in other words, the change of atomic charges. This fact poses
another strong restraint on the classes of reactions that might be treated with molecular
mechanics force fields. Other phenomena of interest that cannot be described with molecular

mechanics, include photochemical processes, which involve electronic excitation of molecules.

B. The principle of hybrid QM /MM methods

Without loss of generality, we may assume that the changing electronic structure is

localized in a small part of the studied molecular system. An example may be a reaction



FIG. 51: Enzymatic reaction. The substrate in the binding pocket and the amino acids in contact

shown as atoms; the rest of the enzyme shown as ribbons. Mulholland et al. (2008).

on a substrate which is catalyzed by an enzyme, see Fig. 51. Of the huge system, only the
substrate and several atoms of the protein are involved in the reaction, while the rest of the
protein and all the surrounding water and ions stay outside of the process. However, these
seemingly inactive parts do interact with the substrate be means of non-bonded forces, and
maintain the structure of the entire system.

So, the studied process is of quantum nature (a chemical reaction, but it may be some
photochemistry as well) and thus, it must be described by a quantum chemical method.
The overwhelming majority of the system (most of the enzyme and all of the water) is not
directly involved in the process, but affects the reaction by way of non-bonded interactions;
here, a description with an MM force field would be sufficient. It turns out to be a good
idea to combine both approaches: The (small) region where the chemical reaction occurs
will be described with a quantum-chemical method, while an MM force field will be used to

deal with the (large) remaining part of the system, see Fig. 52. Obviously, the interaction
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FIG. 52: QM/MM treatment of an enzymatic reaction.



of both subsystems must be taken into account correctly, as well, so that the total energy

may by expressed in a simple fashion as
FEiotal = Equm + Eviv + Eqmyvmum (X.1)

Quite a few hybrid schemes like that have been proposed so far, and they are usually called
quantum mechanics-molecular mechanics (QM/MM) or embedding. These date back to a
first study by Warshel and Levitt in 1976.

Both QM and MM calculations (yielding Eqy and Eypy) do not differ much from those
performed on ‘normal’ systems not taking part in any QM /MM scheme. However, the key
issue is how to treat the coupling of both parts of the system, to obtain Egnnm. This is

the art of QM /MM calculations, and the rest of this section will deal with that topic.

C. Embedding schemes

The methods to couple the QM and MM systems differ in the excess of this coupling, or
in that how large a part of this coupling is neglected. We will have a look at these methods

in the order of increasing complexity (corresponding to the increasing completeness).

1. Unpolarized interactions (Mechanical embedding)

The simplest idea to account for the interactions between the QM and MM regions is to
use a force field. In order to do that, atom types must be assigned to the QM atoms, because
these determine the vdW parameters; further, their atomic charges must be evaluated — for
instance, Mulliken charges may be used. It is then possible to calculate the QM /MM energy

with the Coulomb law and the Lennard-Jones potential as

QM atoms MM atoms unu -q 0,12 0.6
Equm = (l—m +4eim (Z_m - lm)) (X.2)

where the Coulomb interaction may prove necessary to be scaled up for neutral QM zones,
to account for the missing polarization of the wave function by the MM zone.
Certain specific combinations of force fields and quantum-chemical methods lead to very

good results for specific classes of molecules and reactions; generally, care must be taken. ..



2. Polarized QM / unpolarized MM (FElectronic embedding)

The clear deficiency of the mentioned model is that the QM system, or its wave function, is
not affected by the MM system whatsoever. Actually, the wave function should be polarized
by the environment (MM system), which is represented by point charges.

A step to improve the description is to include the electrostatic interaction with the MM
charges in the QM Hamiltonian, whatever the QM method is — semiempirical, HF, DF'T or a
correlated method. The interaction of QM electrons with MM point charges moves from the
Eqmnu term (where it was described with a force field) to the quantum energy Equ, and
is described as an interaction of a charge density with point charges; then, it has the same
form as the interaction with QM nuclei and brings on [little increase of the computational
cost. The interaction of QM nuclei with MM point charges may remain in Equ/niwm-

Thus, the QM Hamiltonian changes to (schematically, may be method-dependent)

QM electrons MM atoms q
D Y S x9
A ij
7 m
and the Eqy/nv term is considered excluding the electrostatic interaction of QM electrons

with MM atoms, so that only the nuclear charges Z; remain:

QM atoms MM atoms 7. q 0_12 0_6
Bapmi= Y 2 (L gy, (% %)) (X.4)

A QM/MM study would then run as follows:

1. The choice of specific QM and MM methods. Since the quantum-chemical calculation
is used to describe the most interesting part of the system, as well as it is by far
the most resource- and time-consuming component of the calculation, particular care
must be taken with the selection of the QM method — the requirements regard both

accuracy and computational efficiency, at the same time.

2. Determination of the Lennard-Jones parameters for the QM part of the system (for
the calculation of Eqyi/nv). One can use either ‘normal’ parameters from a force field,

or attempt to develop a special set of LJ parameters for the used QM method.

3. The simulation itself. Every step of the simulation involves one QM calculation, one
MM calculation and a calculation of Eqy . The properties of interest (possibly but

not necessarily of quantum character) are then evaluated as ensemble averages.



3. Fully polarized (Polarized embedding)

The QM /MM variant just described is already a very good approach with good changes
for acceptable accuracy. The point at which it may be considered somewhat unbalanced
is that whereas the QM system is being polarized by the MM charges, the MM molecules
themselves cannot be polarized.

Should this fact be problematic in a study of a particular chemical process, it is possible
to include this phenomenon in the QM/MM framework as well. However, in such a case, it
is necessary to use a force field that makes it possible to account for the polarization of MM
atoms or molecules.

Most of the standard force fields do not include polarization terms, mainly because of
the extra computational effort. Every MM atom or molecule is assigned a polarizability a,*?

and an nduced dipole at each polarizable center is then obtained as
i = E (X.5)

where E is the intensity of electric field induced by all the surrounding atomic point charges
and all the induced dipoles. Because of that, the induced dipoles must be evaluated iter-
atively, until convergence (self-consistence) is reached. There are two possible issues with
this procedure: (i) its iterative character makes the calculation an order of magnitude more
time-consuming than a non-polarizable MM calculation of the same system, and (ii) the
convergence of dipoles may be potentially problematic.

Within a QM/MM scheme involving a polarized MM method, the induced dipoles i
interact with the QM nuclei (i.e. some extra point charges) and with the QM electron density.
Thus, the entire QM /MM calculation has to be performed iteratively until self-consistency
is reached, and both the QM calculation and the MM treatment of induced charges proceed
in a loop. This makes the computational cost rise dramatically.

To date, no conclusive answer has been given to the question if the completely polarized
methodology brings a significant improvement if compared with the previously mentioned
approach (polarized QM / unpolarized MM). Above all, the improvement would have to be

necessary to justify the quite extreme computational cost.

42 Tn principle, polarizability is a symmetrical tensor of rank 2. If isotropic polarizability is considered then

a becomes a single value (scalar).



D. Covalent bonds across the boundary

All of the QM/MM schemes discussed so far involved purely non-bonded interaction
between the QM and the MM subsystems. However, it may well turn out desirable or
even necessary to divide the whole system in such a way that the QM and MM regions
are connected with one or several covalent bonds. In such a case, a special treatment of
the QM /MM boundary is necessary in order to perform a QM/MM calculation. Several

possibilities are presented in the following.

1. Linear combination of molecular fragments

Imagine one wishes to simulate a large molecule, of which actually only a small part has
to be treated quantum-chemically. The situation is more favorable if the interaction of the
intended QM region with the rest of the molecule may be regarded as exclusively steric, i.e. if
the electronic structure of the QM region is virtually unaffected by the rest of the molecule.
This would be the case if this rest is composed of non-polar, i.e. alifatic or aromatic (even

though large) groups(s), see Fig. 53 for an example.

FIG. 53: A metallic complex with bulky non-polar functionalities. The five benzyl groups labeled
with R are ‘substituted’ by H atoms in QM calculations. The remaining benzyl group is the donor

in a hydrogen transfer reaction, and is thus included in the QM region. Reprinted from CRAMER.

In such a case, the molecule may be regarded as a kind of a sum of the individual
functional groups. The electronic structure of the QM system will be regarded as equal
to the structure of a similar molecule where the bulky non-polar groups are replaced by

hydrogen atoms. Then, the total energy may be expressed as the sum of energies of the



moleculare fragments (the QM-molecule ‘capped’ with hydrogens, and the bulky non-polar
MM-molecules) like

- large small small
Eiotal = Eypyy + (EQM — Exma ) =

= B+ (B — B (X.6)

where the ‘large’ system is the entire molecule, and ‘small” denotes the QM region. One
can understand this approach so that the part of the MM energy corresponding to the
‘small’; interesting molecular fragment is substituted by corresponding QM energy (first line
in Eq. X.6). The alternative way to think of Eq. X.6 (second line) is to concentrate on the
‘small” fragment and its QM energy; the effect of the added non-polar groups is the added

as a correction (in parentheses).

2.  Link atoms

A more difficult situation arises if the intended MM region cannot be regarded as in-
teracting only sterically, and there is for instance strong electrostatic interaction with the
QM region. Typically, this is the case in proteins, where there are always polar and even
charge amino-acid residues in the MM region, which polarize the electron density of the
QM region (which is usually the binding site of a ligand or similar). What is missing in
the approach presented in Section X C2 is the description of covalent bonds crossing the

QM/MM boundary.
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FIG. 54: Link atoms. Left: The QM/MM boundary cuts a bond between two sp3-C atoms and a
link hydrogen atom is used. Right: The link atom is placed on the C—-C bond that has been cut;

possible problem is that non-bonded interactions between the H and close MM atoms may diverge.



Link atoms are atoms that replace the covalently bonded MM system at the boundary, see
Fig. 54. Usually, bonds between two sp3-carbon atoms are chosen to be cut, and hydrogens
are used as link atoms because of the similar electronegativity of carbon and hydrogen. It
is thus desirable to define the QM region so that the bonds to be cut are as unpolar as
possible, in order to minimize errors. The link hydrogen atom is then placed on the original
C—C bond, in a typical C-H bonding distance from the QM carbon atom (Fig. 54 right).

The total energy may then be evaluated in the fashion called additive coupling. As the link
atom is not really part of the QM region, the terms in expression for Eqy that involve the
orbitals on the link atom are not evaluated. An obviously interesting point are the bonded
interactions (bonds, angles and dihedral angles) involving the bond crossing the boundary.
Their energy contributions are generally calculated with the force field. A possible exclusion
are angles involving 2 QM atoms and 1 MM atom, and dihedrals with 3 QM atoms and 1
MM atom, which are omitted in some approaches.

Another important issue is that of MM atoms bearing point charges, that are situated
very close to the QM system — typically, extremely close to a link atom. These would
have unphysically large influence on the electronic structure of the QM system. Therefore,
particular care must be taken of the charges of close MM atoms: These may be scaled down
or even zeroed; alternatively, only their interaction with the QM atoms near the boundary
may be scaled down or zeroed. A promising approach consists in the replacement of the close
point charges by gaussian charge distributions — this maintains all charges while avoiding
most of the trouble with too high interaction energies.

Alternatively, it is possible to apply the Eq. X.6 again, with the QM region (‘small’) now

including the link atoms:
Erota = Eypy + (Egna™th — Eypah) (X.7)

This is called the subtractive coupling.

The concept of link atoms is used very frequently in the studies of biomolecules, when
quantum description is desired. The artifical separation of the molecular system in two brings
on certain issues that need to be resolved in order to obtain correct results. Nevertheless,
the development of QM /MM methodology has advanced considerably in the recent years,

so that it is now considered to be a de facto standard tool in computational biophysics.



Deficiency of subtractive coupling — deprotonation of an alcohol
CHgCHQCHgCHQOH — CHgCHQCHgCHQO_ -+ H+

This reaction takes place in a small region of a large molecule. So, we can describe
the ‘interesting’ region with QM — this will correspond to a methanol molecule. The

rest of the molecule will be described as whole butanol with MM:

EOM/MM _ QM n ( EMM - pMM )

butanol methanol butanol methanol

We wish to evaluate the energy as a function of the O-H distance r. Let us assume
the parameters for methanol and butanol to differ only in the force constant k™

for the O—H bond. The remaining terms will give a constant independent of r:

butanol

1 1
EQM/MM(T) - Eﬁzﬁhanol(r) + (ﬁkk())ulganol ’ (T‘ - T0)2 - §kr(1)1§hanol ’ (’l" - To)z) + const.

1
= E™M (1) + 3 (Kftanol — Krethanol) * (1 — 70)* + const.

methanol butanol methanol

The MM energy remains in the form of a term proportional to r?. For large r, the

QM energy will be proportional to —%, due to Coulomb’s law:

lim BN () = lim—1 =0

oo butanol r

The asymptotic behavior of total energy will look like

butanol
r—00

1 1
lim EQM/MM(T) = lim <—— + 51@ : 7“2) = lim7? = oo
r

So, the inequality of k%M for methanol and butanol will make the total energy grow
over all limits, for large distances r. The entire effort will go in vain.

Note that such an error will not arise in the additive coupling at all. Methanol
will be calculated with QM, and something like propane with MM. This way, the

parameters for the hydroxyl group are not required at all.




Excursion — the linking scheme
The atom charge in most force fields are designed in such a way that certain groups
of atoms maintain neutral or integral charge. See an example of the CHARMM force

field:

RESI SER 0.00
GROUP

ATOM N NH1  -0.47 ! |

ATOM HN H 0.31 ! HN-N

ATOM CA CT1 0.07 ! | HB1

ATOM HA  HB 0.09 ! |

GROUP ! HA-CA--CB--0G
ATOM CB  CT2 0.05 ! | \
ATOM HB1 HA 0.09 ! |  HB2  HG1
ATOM HB2 HA 0.09 ! 0=C

ATOM 0G OH1  -0.66 ! |

ATOM HG1 H 0.43

GROUP

ATOM C  C 0.51

ATOM O O -0.51

Now, let us take the side chain as the QM system. Then, the atom CA is very close
to the link atom placed in between CA and CB, and so the point charge on CA
would disturb the QM region drastically. Also, it is impossible to remove the CA
atom simply, because the entire backbone would not be charge-neutral any more.

There are a couple of possibilities to deal with this problem:

e A drastic but still often used linking scheme (‘exgroup’ in CHARMM) is to
remove all charges of the group close to the QM region. In our example, these

are CA, HA, N and HN. Obviously, we would lose the strong N-HN dipole

within this scheme, which could lead to very inaccurate result.

e A better way (‘div’ in CHARMM) is to divide the charge of the so-called host
atom (here CA) among the remaining atoms of the whole host group (com-
posed of HA, N and HN). The resulting charges in this example would be:
CA=0, HA=0.11, N=—0.44, HN=0.33.

The latter approach is limited by the requirement to have the QM /MM boundary
between two individual charge groups. ‘Cutting’ of a covalent bond within a single
charge group (e.g. between CB and OG in this residue) is only possible with the
former approach (the modified charges would be CB=0, HB1=0, HB2=0).




3. Frozen orbitals

As mentioned, the introduction of link atoms may cause problems with non-bonded in-
teractions, because of the possibly extremely short distance between these artificially added
QM atoms and nearby MM atoms. Also, the representation of charge densities by MM
point charges may result in inaccuracy and/or computational instability. A promising at-
tempt to avoid this issue may be to introduce no new atoms, but rather treat the orbitals on
the QM /MM boundary in a special way. The shape of these orbitals can be held constant
during the simulation, hence the term frozen orbitals.

With this approach, we will have not two but rather three regions in the simulation: the
QM and MM regions as before, and an auziliary region on the QM /MM boundary on top of
that. The atoms in this auxiliary region possess their normal nuclei and electron densities
expressed using the basis of atomic orbitals. Then, the auxiliary region actually possesses
a quantum character, but still its interaction with itself as well as with the MM system
can be calculated classically.*® Another only slight complication is the energy of interaction
of the QM system with the auxiliary — this adds another term to the Hamiltonian which
corresponds to the interaction of the wave function with the frozen charge density in the
auxiliary region, which is only slightly more complex than the interaction with point charges.

In the simple case of a single covalent bond being cut by the QM/MM boundary, the

auxiliary region may be very small, as seen in Fig. 55.
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FIG. 55: Frozen orbital scheme. Red — the frozen sp® orbital for the bond crossing the boundary.

There are basically two approaches how to freeze the electron density. In the localized

43 This may seem awkward but it is not so bad: interaction of (frozen) charge density with itself, and inter-

action of (frozen) charge denstity with a set of point charges; this is no issue in a calculation whatsoever.



SCF method (LSCF), every covalent bond crossing the QM /MM boundary is represented by
a single frozen orbital — this is the (hybrid) atomic orbital localized on the QM atom before
the boundary, which is calculated once at the beginning of the simulation and does not
change shape afterwards any more. Some care must be taken of the occupation of the frozen
orbitals in order to handle the density correctly, and this requires accurate accounting.

The generalized hybrid orbital approach (GHO) is different in that the QM /MM boundary
does not cut any covalent bond, but rather the boundary passes through an atom. Here,
the (hybrid) atomic orbitals on this particular atom which would belong to the MM region,
are considered to be frozen. Their populations are calculated so that the resulting charge
density corresponds to the point charge that this atom would have in an MM calculation.
The remaining orbital on the atom, which points inwards the QM region, is frozen in shape
but its occupation is free to vary in the QM calculation.

The approaches using frozen orbitals have received certain attention in the recent years
and they are constantly being developed. However, the method of link atoms is clearly
being applied more often, and has already been implemented in many popular simulation

packages.

E. Advanced stuff and examples
1. QM/QM/MM

It is possible to improve the process of dividing the entire molecular system, so that there
are three disjunctive regions: Then, one may be treated with an advanced, expensive QM
method (correlated methods like CC, CAS...), another region surrounding the first one will
be described with a faster QM method (like DET or semiempirical), MM will be used for
the rest of the system, probably including the solvent. This approach may be referred to as

QM/QM /MM, and an example is the ONIOM scheme®* implemented in GAUSSIAN.

2. Photochemistry—Retinal

Retinal is a polyene, covalently bound to a lysine side chain via a protonated Schiff base.

44 4 clear connotation with the layers of an onion
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FIG. 56: Retinal (the chromophore) in rhodopsin, with the counterion Glul13 and charged Glul81.

It is not easy to choose a correct size of the QM region, and there are many possibilities:

size goodness, issue

polyene (ring to NH) bad, boundary cuts a polar bond

retinal+CHs bad, link atom too close to the important region
QM1 |retinal+sidechain to CB |fair, but no charge transfer to Glul13 possible
QM2 | QM1+counterion better, but no charge transfer to Wat

QM4 |QM2+Wat2b+Thr94  |good, but no polarization at Glul81
QM4+Glul8l very good, but...

A highly correlated method (like CAS-PT2) is required to calculate the electronic spec-
trum of a chromophore in a protein (like the retinal within a rhodopsin). Also, it is crucial to
describe the interaction of the electronic structure of retinal with the atoms of the protein.
On the other hand, the vdW interaction with the protein is not so important, because the
structure of the molecular system does not change during the photochemical process. Thus,
a single-point calculation is sufficient. For the geometry optimization or MD simulation of
the system, the complex electronic structure of retinal makes the use of a (modest) QM
method necessary.

The calculation starts with a QM/MM calculation with approximative DFT, and the
structure of the whole protein is optimized. The coordinates of QM atoms are written into
a file, and so are the coordinates of all MM atoms together with the charges. These sets of

data are fed to a highly correlated method, for the calculation of excitation energy.



XI. IMPLICIT SOLVENT AND COARSE GRAINING
A. Continuum electrostatic methods: Free energy of solvation

Up to now, we treated the molecules of interest either in the gas phase or immersed in an
explicit solvent, meaning a solvent represented by individual atoms/molecules. Then, the
difference of solvation free energy could be evaluate by such methods like the free energy
perturbation or umbrella sampling (PMF).

Consider the example of a polypeptide in the a-helix and (-sheet conformations. The

free energy difference of the two structures is given by
e the difference of internal energies / enthalpies

e the entropic contributions — above all the vibrational component of the configurational

entropy
e the difference of free energies of solvation

The a-helix has a much larger dipole moment than the (-sheet, due to the peptide bonds
pointing in the same direction with respect to the axis of the helix. Because of that, the a-
helix is better solvated in a polar medium (like water). Therefore, the solvation (qunatified
by the solvation free energy) plays a key role in the equilibrium between the conformations
of the peptide in solution.

In this chapter, we will discuss how to describe the solvent with an implicit treatment.
Since the number of solvent (water) molecules may easily become excessive for a large solute
molecule, this approach may be preferred to an explicit representation of solvent, which
would be too costly.

Several energy contributions have to be considered for the process of solvation:

e A cavity (Fig. 57) in the solvent bas to be formed against the outside pressure. This
also involves the necessary rearrangement of the solvent molecules at the surface of
the cavity. The energy contribution AG.,, accounts for i.a. the decrease of entropy

and the loss of solvent—solvent interactions.

e The van der Waals (AGyqw) and electrostatic (AGe,) interaction of the solute

molecule with the solvent (Fig. 58).
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FIG. 57: Formation of the cavity
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FIG. 58: Electrostatic and vdW interactions upon inserting the molecule into the cavity.

Then, the total solvation energy is

AGsolv - AGcav + AGvdVV + AGele (XIl)

An important concept is that of the solvent accessible surface area (SASA): We consider
the molecule to be a solid body exposed to the solvent, and SASA is then the surface area
of this body. In a reasonable approximation, the terms AG.,, and AG,qw are taken to be
proportional to SASA. Since arbitrary surfaces are difficult to involve in calculations, it is
convenient to obtain the total surface of the molecule from the surfaces of the individual
atoms of the molecule, S;.*> A practical approach is then to write

AGcav + AC¥vdW = Z G+ Sz (XIQ)

i
Since this term does not contain the electrostatic contribution (which will be discussed in
the following) it is appropriate to parameterize it with respect to the solvation energies of

hydrocarbons.

45 In principle, it is possible to determine the SASA of the molecule as a whole. This may be done by rolling

an imaginary ball of a certain diameter (typically 2.8 A to mimic HyO) on the molecular surface.



When does it work?

e will probably work if the electrostatic effect of the surrounding solvent is dominant.

An example is the shielding of solvent-exposed charged side chains of proteins.

e will not succeed if some kind of specific interaction between the solute and the solvent
plays a role, such as hydrogen bonding. An example may be the dynamics of small
peptides dissolved in water; a tripeptide can form either an intramolecular hydrogen
bond (with a seven-membered ring) or hydrogen bonds with the solvent. This fine

balance is difficult to describe only via general electrostatic interactions.

In the following, we will discuss several models to evaluate the term AGg. As discussed in
the chapter on non-bonded interactions, the electrostatic energy of a point charge ¢ located
at 7 is

Ege = q- O(7) (XL.3)
where ®(7) is the electrostatic potential (ESP) induced by the charge distribution in the
rest of the system. To obtain the solvation energy, we have to calculate the electrostatic

potential of the protein in vacuo ®,.(7), and in solution, P, (7). The solvation energy

then follows:
AFEqe = q Peoty () — ¢ Pyac(7) (XI.4)
With the defintion of the reaction field
Dyt () = Dsot (7) — Prac(7) (XL.5)
the solvation energy follows as
AEge = q - Pu(7) (X1.6)

As we learned up to now, the potential energy F is related to one point on the potential
energy surface. Moving to the free energy, we have to average over all the solvent configura-
tions to include the entropy contributions.*® Thus, it would be af advantage if we are able
to determine the reaction field in such a way that it includes these contributions, so that we

effectively obtain the free energy:

AC7Yele =q- (I)rf(F) (XI?)

46 And, in an NPT ensemble, the enthalpy includes the PV term in addition (PV = NkgT for ideal gas).



1. Continuum electrostatic methods: the Born and Onsager models

Born (1920) determinded analytically the work needed to bring a charge ¢ from vacuo
into a spherical cavity of radius a formed in a solvent with a dielectric constant ¢ (Fig. 59

left) as

2 1
AGy. — —;i (1 _ 8) (XL8)
a

The dielectric constant takes values of 1 for vacuo (thus AGeg. = 0), 80 for water and

between 2 and 20 for protein environment.

FIG. 59: Solvation of a point charge (left) and a point dipole (right).

Onsager and Kirkwood (1930) developed a model for a dipole in a cavity (Fig. 59 right).
The dipole moment of a molecule p induces charges at the surface of the cavity — the molec-
ular dipole is an “action” which induces a “reaction” of the solvent, hence the electrostatic

potential is called the reaction field, which was derived as

20e—1) 1
P = - — XI.9
f 2¢+1 a? a ( )
1
AClele - _iq)rf Y (XIlO)

These simple models are implemented in many standard quantum chemistry programs
as well as simulation packages, in order to calculate solvation energies. Of course, even for
small molecules, the point charge or dipole approximation in combination with a spheri-
cal or ellipsoidal surface is quite unrealistic. Therefore, the polarizable continuum model
(PCM) extends these schemes to arbitrary surfaces constructed with the use of vdW radii
of the atoms. An alternative approach are the conductor-like screening models (COSMO),
which derive the polarization of the dielectric (insulating) solvent from a scaled-conductor

approximation.



2. Continuum electrostatic methods: Poisson—Boltzmann equation (PBE)

For large molecules, other approximations were developed, starting from the Poisson

equation
VeV = —4mp (XI.11)

This is a partial differential equation. Given are the charge distribution p and the dielectric
constant €, and we wish to solve the equation for ®.

One way to solve it is to discretize the problem on a three-dimensional grid. Here, we
have the charge distribution and the (non-constant) dielectric constant distributed on the
grid, and the potential @ is calculated on every grid point iteratively (Fig. 60), using finite

differences for the second derivative.
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FIG. 60: Representation of ®, p and € on a grid.

Very often, we want small tons to be part of the solvent. In certain situations, ions
are very important, like in the simulations of DNA, where counterions are necessary to
compensate for the charge on the phosphate groups. If we do an MD with explicit solvent,
the include the ions as particles, naturally. But, how can we accomplish this within a
continuum representation of the solvent?

If we know the electrostatic potential in the system, the energy of an ion is
Ei(r)=q - ®(r) (XI.12)
and with the Boltzmann distribution, the density at that point is

ni(r) =nf - exp {—%{)T(T)} (XI.13)



with n? being the number density in bulk solution, or concentration. Therefore, anions con-
centrate in regions with positive ® whereas cations in regions with negative ®. Multiplying

with the ion charges, we obtain the charge distribution of the ions:

i@
Pions = Z%’ -n} - exp [—q (T)} (XI.14)

kgT

Now, if we have two kinds of ions with opposite charges (e.g. Nat and Cl~ with ¢ = £1) in

the solution, we will have terms like
1-exp[—1-®(r)/kgT] —1-exp[l- ®(r)/kgT] (XI.15)
which may be combined by noting the definition of hyperbolic functions:
exp|x] — exp[—z]| = 2sinh|x] (XI.16)

Then, adding the charge distribution due to the ions, to the Poisson equation, we obtain

the Poisson—Boltzmann equation:

i D
VeVd = —dnp + XZ: g; - my - sinh {q kngrq (XI.17)
This equation is usually written in the form
kgT - P
VeVd = —drp +e- k2 - —=— . sinh a-2(r) (XI.18)
q /CBT
with the Debye-Hiickel parameter
8mq?l
e XI1.19
" e - kBT ( )

(ionic strength I = 3. ¢;27, ¢; — concentration, z; charge of ion 7).
At low ionic strength, the difficult differential equation may be simplified by truncating
the Taylor expansion of sinh, which yield the linearized PBE of the form

VeV = —drp+e- k5% O(r) (XI.20)

The PBE describes two effects of solvation: First, the charge distribution on the protein
polarizes the dielectric outside (the “solvent”). This leads to a screening of the effect of
the solvent-exposed charges of the protein atoms. The “solvent molecules” will arrange

around the charge, and dipoles will be induced, which will compensate for the charge largely.



Effectively, the charges pointing into the solvent will be nearly canceled. The second effect is
that the solvent tons will be distributed so that the overall charge distribution will become
more uniform. For instance, if a negative charge points into the solvent, a positive ion will
be located close to it, effectively reducing the magnitude of the electrostatic field. These
two points usually become important when (photo-)chemical reactions in proteins are to be
described. The solvent around a protein should always be taken into account.

When calculating solvation energies, we have to determine the reaction field. For this,

we perform one PBE calculation ‘in vacuo’ (¢ = 1) and one for the solution (¢ = 80)
B = gy — Py (X1.21)
yielding the solvation free energy as

1
Gotee = 5 3 61 (X1.22)

The computational cost of the solution of PBE becomes excessive if PBE has to be solved
several million times during a MD simulation (remember, it has to be done in every MD

step). Therefore, approximations have been developed.

3. The generalized Born (GB) model

A simple idea is to use the Born equation XI.8 for the atomic charges of the biomolecule,
to calculate the solvation energy of the charges:

2
AGY, = — (1 - 1) & (X1.23)

ele 7 c : 26%'
K3
What changes upon solvation as well, is the interaction of the individual charges. The

interaction energy in a medium with € > 1 may be expanded as

1 1g-qj
E. = - -
ele 225 Tij

i
1 g-q; 1 1 ¢ " qj

= = —(1-= ) X1.24
2 ; Tij 2 ( 5) ; Tij ( )

where the red term is the usual Coulomb interaction in vacuo, and the blue one corresponds

to the reaction field contribution — the contribution due to solvation:

1 1 qi - q;
AGY, =—=[1-= § ELA XI1.25
ele 2 < 5) — Tij ( )



The solvation contribution to the free energy then follows as the sum of the terms AG!, +

AG2 .

ele*

1 1 q ¢ - g
AGygo = —= (1 - = k3 U ) XI.2

This formula describes the interaction of charges that are located in spherical cavities
with radii a;. For charged bodies of generalized shapes, the derivation is only valid if the
distance between the charges is large (r;; > a; + a;). In other words, Eq. XI1.26 can be

considered valid for the interaction of the charges ¢; and g; in one of two limiting cases:

=, if 1 = j (‘self-interaction, i.e. solvation energy)

qi * q; e .
——, ifi# j and r;; — oo
Tij

Therefore, the interaction of two charges with finite radii becomes the interaction of point
charges once the distance is large. But, what is the interaction energy for intermediate
distances of, say, 2 A to 10 A? What we need here is an expression that interpolates between

the limiting cases. It can be easily shown that a function of the form

7’2

—31 (XI1.28)

4@1'01]'

f(r,;j) = \'/7”12J + aiaj exXp |:—

exhibits this behavior: The exponent vanishes for large r, so that f ~ r; and the exponent

approaches unity for small r, giving f ~ ,/a;a; or a;. With this function, we can write

1 1 qi * q;
AGge=—=(1—~-]- XI1.29
: 2 < 5) ;f(ﬁj) ( )

for the free energy of solvation of charges within the Born approximation, involving

1. the solvation energy of every charge due to the Born formula
2. the change of the Coulomb interaction energy of the charges, due to solvation

Unfortunately, there is a fundamental problem with this equation. The Born equation
was derived for a charged particle with radius a, in contact with the solvent. But, many
charges will be deeply buried inside the protein, and will not ‘feel’ much of the solvent!
Therefore, if we use the same value of a; for all charges, the solvation energy of some charges

will be grossly overestimated.



A solution would be to build an empirical model: The solvation energy of charge g;

| 1\ ¢2
AGL., = —= <1 - —) % (XL.30)

2 g /) a;
depends on a;. Then, if we wish to scale down this energy for a charge inside the protein, we

can use a larger value of a; than for the same charge located at the surface of the protein.

What needs to be done is to determine a; for every charge. In principle, this could be done

1

cle; and also the

by performing PBE calculations for every charge, which would yield AG
a;. Alas, this is too costly, and doing PBE calculations is exactly what we wanted to avoid.

Therefore, we need an approximation to calculate the radii a;.

4. A simple approximation to the Generalized Born (GB) model

The work necessary to transfer a charge distribution p into a polarizable medium is
1
AG = 3 /p -0 dV (X1.31)

Now, consider a charge ¢; inside a protein surrounded by water (). It can be shown that
the energy of this charge can be written as
AGy,=——[1—— / = dV (X1.32)
8 ew ) Joxt T
where the integration proceeds over the ‘exterior’ of the protein, i.e. over the whole space

outside the protein (Fig. 61).

FIG. 61: Integration over ‘int’ or ‘ext’

Comparing with the Born formula (Eq. XI.8), we find

11 1
—=— [ Zav (X1.33)

a; AT Jou T



with r being the distance from the charge to the ‘boundary’ of the protein. This a; will vary
depending on the location of the charge — it will be larger for charges buried inside of the
protein! The integral over the outside of the protein can be transformed into an integral

over the ‘interior’ of the protein, using the van der Waals radius «; of atom i:

11 1 1
— == —dv (XI1.34)

Q; Q4 4 int,r>aq; r
A possible approximation of this is to fill the space inside with spheres, and approximate

thereby the volume of the protein molecule by the volume of the individual spheres:

1 1 1 1
S N —dv (XL.35)
a; Q; i 4 sphere j r

FIG. 62: The simple GB model

However, this approximation turns out to be insufficient. Instead, one can try to model
the space to be integrated over with an empirical formula: the model has to represent the
space ‘int” in Eq. XI.34. Every atom has a volume V}, and since AG; < a; ! the volumes of

all other atoms reduce the solvation energy of atom i, i.e. they increase a; by

-4 (X1.36)

where r;; is the distance between the charge ¢ and the atom j, which reduces its solvation

energy. The model has the following terms:

bond angle
1 1 BV BV
-1 _ _p _ 2V 3VJ
al A . RVdW,i ! R?/dw,i ; T;’Lj ; T?j
nonbond
A
— Y = CCR(Ps,ry) (X1.37)

- r.
J v



FIG. 63: The empirical GB model. blue — the binding neighbors, black — the angle, green — the

nonbond ‘atoms’.

The Born radius of atom 7 in solution is A- Ryqw ;, and then reduced due to a quadratic term,
the sum over the bonded, neighbors (bonded, angles) and the all non-bonded interactions.
For the latter, the function CCF is unity when the atoms do not have overlap, but reduced
when they overlap. The parameters A, Py, ..., P5 are fitted to reproduce the PBE results for
the solvation energies of atoms in peptides and proteins. This model works (in contrast to

the simple analytical one discussed above Fig. 62) due to the empirical fitting of parameters.

5. Practical example — MM-PBSA

The implicit solvent models are used to evaluate the solvation energy and force acting
upon the atoms of solute in an MD simulation, but this not the only possible application.
The considerable interest in free energies of binding of ligands to biomolecules, or even in
the absolute free energies of molecules in solution led to the development of post-processing
approaches to evaluate free energies. Here, a normal simulation (no matter if with an implicit
or explicit solvent) is run, and the necessary components of the free energies of interest are
evaluated by an analysis of the trajectory obtained.

The MM total energy of the system is evaluated without cutoff to yield the internal
energy. The electrostatic contribution to the solvation free energy is evaluated with some
of the methods described in this chapter, whereas the non-polar contribution is determined
with SASA-dependent terms. Finally, the configurational entropy can be estimated with a
normal-mode analysis. The total free energy is approximated by the sum of these terms.

This approach is undoubtedly very approximative and the various methods used are of

very different character. Yet, results of very good quality may still be obtained.



B. United-atom force fields and coarse-grained models

In the studies of biomolecules, a proper and efficient treatment of the solvent is the key
to the feasibility of the entire model. However, it may well happen that there are other
components in the system that contain a large number of atoms — an example may be the
lipid in the studies of transmembrane proteins. Even worse, the biomolecule itself may be
exceedingly large — a very large protein or a long nucleic acid species. In such cases, it is
necessary to modify the description of the biomolecule, and to design a simplified molecular
model.

Early force fields (like Weiner 1984 and others) already used a similar idea. Within the
united-atom force fields, each hydrogen atom was considered not individually, but rather
condensed to the heavy atom to which it was connected. This way, the number of atoms
was reduced considerably if compared with the all-atom force fields, which earned popularity
in the 1990’s. It is necessary to mention here that this approach works very well for non-
polar C—H bonds, so that it is a very good approximation to consider a methyl group
constituting one united atom. On the other hand, the substitution of a polar O-H group by
a single particle is obviously a very crude approximation which will not work unless there
are further correction terms in the force field. The united-atom force fields found their use in
the modern computational chemistry e.g. in studies involving lipids, where each methylene

group constitutes a united atom, cf. Fig. 64.

FIG. 64: A snapshot from the simulation of a lipid bilayer in water. The lipid (DOPC) is described
with a united-atom force field — every CHy group is represented by a united atom. Downloaded

from the website of R. Bockmann.



An advanced and sophisticated approach to cut the computational expense of simula-
tions is the coarse graining (CG) of the problem. Quite naturally, a way to accelerate the
evaluation of interactions is to reduce the number of particles involved. As it may not be
always possible to reduce the number of atoms, an alternative idea is to consider particles
composed of several atoms, so-called beads. Then, the number of inter-particle interactions
will decrease, and in spite of the possibly more complex form of these interactions, the com-
putational expense may be largely reduced as well. The necessary parameters of the force

field are often obtained by fitting to all-atom force fields.

CHOLESTEROL PEPTIDE (ALYWK)

FIG. 65: Left: The CG force field MARTINI — mapping of beads onto molecular fragments. Right:

A solvated peptide with MARTINI. Downloaded from the MARTINI website.

Every bead usually represents several atoms, and a molecule is composed of several beads,
refer to Fig. 65 for the MARTINI force field. Such CG force fields are particularly useful
for simulations of large-scale conformational transitions, involving either exceedingly large
molecular systems or excessive time scales, or both. Another example is the VAMM force

field for proteins, where every amino acid is represented by a single bead at C-a, see Fig. 66.

CA (N+6)

666\
o
& Ry
4\ T
CA(2) CA(4) “>~._ CA(6)

V(local)
CA(1) CA(3) CA(5)

FIG. 66: The CG force field VAMM. Reprinted from Korkut & Hendrickson 2009.



XII. ENHANCING THE SAMPLING

At room temperatures, normal nanosecond length MD simulations have difficulty over-
coming barriers to conformational transitions and may only sample conformations in the

neighborhood of the initial structure.

A. Molecular dynamics as a way to the global minimum

Quotation from “A molecular dynamics primer” by Furio Ercolessi, University of Udine,
Italy (www.fisica.uniud.it/"ercolessi).

Molecular dynamics may also be used as an optimization tool. Let us suppose that a set
of N particles has many possible equilibrium configurations — this is truly the case with large
(bio)molecules. The energy of these configurations is in general different, and one of them
will be the lowest; each of the configurations, however, corresponds to a local minimum of
the energy and is separated from every other by an energy barrier.

Finding the most energetically favorable structure — i.e. the global minimum of the en-
ergy function — within an approach based on traditional minimization techniques (steepest-
descents, conjugate gradients, etc.) is tricky as these methods do not normally overcome
energy barriers at all and tend to fall into the nearest local minimum. Therefore, one would
have to try out several (many) different starting points, corresponding to different “attrac-
tion basins” in the energy landscape, and relax each of them to the bottom of the basin.
The optimal structure would then be the one with the lowest energy, provided we were lucky

enough to select it in the list of candidates.

1. Simulated annealing

Temperature in an MD (or Monte Carlo) simulation is the key to overcome the barriers:
States with energy E are visited with a probability of exp[—E/kgT]. If T is sufficiently
large, then the system will “see” the simultaneous existence of many different minima, still
spending more time in the deeper ones. By decreasing T' slowly to zero, there is a good
chance that the system will pick up the deepest minimum and stay trapped there. This
consideration is the principle of simulated annealing: The (molecular) system is equilibrated

at a certain temperature and then (slowly) cooled down to 7' = 0. While this procedure does



not guarantee that the true global minimum will be reached, it often does so. And, since no
a priori assumptions are made about the optimal structure, it often yields structures that

would have been difficult to foresee by intuition alone.
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FIG. 67: Simulated annealing.

This method is often used to optimize the structure of molecular systems, but its validity is
much more general: Given an objective function Z(ay, ..., ay) depending on N parameters,

¢

one can regard each of these parameters as a degree of freedom, assign it a “mass”, and let
the system evolve with a molecular dynamics or Monte Carlo algorithm to perform simulated
annealing. One of the early applications of this method can be found in a famous paper
discussing an application to the problem of the traveling salesman (Kirkpatrick et al., Science

1983).

2. MD quenching

There is yet another possibility to make use of molecular dynamics not only to obtain the
minima of the energy, but even to approximate their relative free energies (or equilibrium
constants). An MD/quenching simulation consists of a usual MD trajectory, which is a
basis for subsequent minimizations: In regular intervals, the structure from the simulation is
subject to energy-minimization. In principle, we avoid the need to select starting structures

for our minimizations — instead, we let the MD simulation take care of that.



FIG. 68: MD quenching.

The obtained (possibly many) minimized structures can be processed e.g. by a cluster
analysis to determine the set of unique optimal structures, their total energies and number
of hits. For a small molecular system, we would observe few unique structures, each occuring
many times; for larger systems, the number of unique structures would grow rapidly.

A potentially appealing feature of MD /quenching is the possibility to estimate the relative
free energies of the observed structures. If the MD simulation subject to post-processing
is long enough (i.e. if sufficient sampling of the configuration space is guaranteed) then the
ratio of their occurence (number of hits, n;) determines the equilibrium constant K, and

thus the free energy AG:

K="
ny
AG = —kpTlog K = kyTlog 2 (XIL1)
n

It is important to note that we consider whole regions of configuration space (as in Fig. X)
rather than points to be individual structures. Therefore, we obtain no curves of free energy
as a function of coordinate(s) but rather single values of free energy differences for certain
pairs of “structures”. There is an interesting, neraly philosophical question connected to
this — is there something like “free energy surface” at all? Or, like obviously is the case with

quenching, is it only meaningful to ask for discrete values of free energy differences?
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FIG. 69: MD quenching?2.
B. Replica-exchange MD

Replica-exchange molecular dynamics (REMD, a.k.a. parallel tempering) is a method to
accelerate the sampling of configuration space, which can be applied even if the configura-
tions of interest are separated by high barriers. With REMD, several (identical) copies, or
replicas of the molecular system of interest are simulated at the same time, with different
temperatures. The essence of the method is that the coordinates together with velocities
of the replicas may be switched (exchanged) between two temperatures. In practice, the
probability of the replica exchange between temperatures 7} < T3 is determined in (regular)
time intervals from the instantaneous potential energies U; and U, in the corresponding
simulations as

1 if Us < Ul,
Pl 2) = (XI1.2)

exp [( L 1 ) (U — Ug):| otherwise.

kgTi kgl

Then, if P(1 < 2) is larger than a random number, the replicas in simulations at tempera-
tures T and T5, are exchanged.

When using REMD, there usually one replica is simulated at the temperature of interest
(often T7 = 300 K) and several other replicas at higher temperatures (77 < T < T3 < ...).
After, say, 1000 steps of MD, replica exchanges 1 < 2, 3 < 4 etc. are attempted, and
after next 1000 steps the same is done for 2 < 3, 4 < 5 etc. so that only the replicas

at “neighboring” temperatures can be exchanged. With such setup, the advantages of the



simulations at high temperatures — fast sampling and frequent crossing of energy barriers —
combine with the correct sampling at all temperatures, above all at the (lowest) temperature
of interest. Although the computational cost of REMD simulations is increased (because
many simulations are running simultaneously), this additional investition of resources pays
off with extremely accelerated sampling. Moreover, the simulations running at different
temperatures are completely independent of each other between the points of attempted
exchange, making this problem trivially (embarassingly) parallelizable. The first application
of REMD was for a truly biophysical problem — folding of a protein (Sugita & Okamoto,
Chem. Phys. Lett. 1999).
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FIG. 70: Replica-exchange MD.

An important point with REMD is a suitable choice of temperatures T;. This depends on
(i) how frequent exchanges we wish (average probability P(1 « 2)), (ii) the size of the system
(the number of degrees of freedom Ny.¢) and (iii) the number of temperatures/simulations.
For protein/water systems with all bond lengths constrained to their respective equilibrium
values (so that Ngor = 2N, N — number of atoms), the average probability is related to the

difference of temperatures T, — T} = €T} as
P(1 < 2) &~ exp [-2e°N] (XI1.3)

Using this relation, we can design the set of temperatures to suit our needs.
The REMD method can be likened to “super simulated annealing” without a need to

restart. The systems at high temperatures can feed new local optimizers to the systems at



low temperatures, allowing tunneling between metastable states and improving convergence

to a global optimum.

1. Replica-exchange umbrella sampling

There is an interesting application of the replica-exchange idea concerning biasing poten-
tials rather than thermodynamic parameters (Okamoto et al., J. Chem. Phys. 2000). With
the replica-exchange umbrella sampling approach (REUS), several copies of the molecular
system are simulated with different biasing potentials — these are the separate umbrella-
sampling simulations as presented in a previous chapter. As with the previously described
REMD, an exchange of replicas with ‘neighboring’ umbrellas is attempted in regular inter-
vals. Obiously, the criterion for the acceptance of a replica exchange has to be modified,

and may read for instance

A= /%Tl (U1(q2) — Urlar)) — kiTQ (Us(q1) — Ua(go)) (XT1.4)
1 if A <0,
Ple2) = (XIL5)

exp [—A] otherwise.

where U; is potential energy calculated with the energy function (including bias — umbrella)
from simulation ¢, and ¢; are the coordinates of all atoms from simulation . With this setup,
improved sampling of the configuration space and thus increased efficiency of the simulation
may be expected.

It is even possible to do multidimensional replica exchange simulations, where the molec-
ular system is replicated with multiple different simulation parameters — for instance, various

temperatures and various biasing potentials.

C. Methods using biasing potentials

Using quotations by Helmut Grubmiiller
(www.mpibpc.mpg.de/home/grubmueller/projects/MethodAdvancements/ConformationalDynamics)
The energy landscapes occuring in large (bio)molecular systems feature a multitude of
almost iso-energetic minima, which are separated from each other by energy barriers of var-

ious heights. Each of these minima corresponds to one particular structure (‘conformational



substate’); neighboring minima correspond to similar structures. Structural transitions are
barrier crossings, and the transition rate is determined by the height of the barrier.

Since in conventional MD simulations only nanosecond time scales can be covered, only
the smallest barriers are overcome in simulations, and the observed structural changes are
small. The larger barriers are traversed more rarely (however the transition process itself
may well be fast), and thus are not observed in MD simulations.

Several approaches to remedy this drawback by way of modifying the potential energy

surface of the molecular system have been proposed.

1. Conformational flooding

(Grubmiiller, Phys. Rev. E 1995)

A method called ‘conformational flooding’ accelerates conformational transitions in MD
simulations by several orders of magnitude and thereby actually can bring slow confor-
mational transitions into the scope of simulations. From the ensemble generated by the
(unbiased = normal) MD simulation, a localized artificial ‘looding potential’ Vj of certain
(variable) strength can be constructed, meeting two requirements: (i) Vj shall affect only the
initial conformation and vanish everywhere outside of this region of conformational space,
and (ii) it shall be well-behaved (smooth) and ‘flood’ the entire initial potential-energy well.
A multivariate (n-dimensional) Gaussian function exhibits such a behavior:

n

E
Vi = Eq - exp [— o ﬂT > qui] (XIL.6)
B -

where Fj is the strength of the flooding potential. Here, the first n essential dynamic modes
with eigenvalues \; will be flooded, with ¢; being the coordinates along these modes.

This potential is included within subsequent ‘flooding’ (biased) simulations and rises
the minimum of the initial conformation. Thereby, the barrier height is reduced, and the
transitions are accelerated (following the theory of transition states). It is important to
note that this is achieved solely by modifying the energy landscape within the minimum
where the dynamics is already known and thus uninteresting; the barriers and all the other
minima — which we are interested in — are not modified at all. The bottom-line is that
‘conformational flooding’ is expected to induce unbiased transitions, i.e. those which would

be observed without the flooding potential, too, on a much longer time scale.



FIG. 71: Sketch of the conformational flooding (from the website of H. Grubmdiller).
2. Metadynamics

Using quotation by Alessandro Laio (people.sissa.it/"laio/Research/Res_metadynamics.php)
The method is aimed at reconstructing the multidimensional free energy of complex
systems (Laio & Parrinello, Proc. Natl. Acad. Sci. USA 2002). It is based on an artificial
dynamics (metadynamics) performed in the space defined by a few collective variables S,
which are assumed to provide a coarse-grained description of the system. The dynamics is
biased by a history-dependent potential constructed as a sum of Gaussians centered along
the trajectory of the collective variables. A new Gaussian is added at every time interval

ta, and the biasing potential at time ¢ is given by

Va(S(x),t) = Z w - exp {M] (XIL7)

2052
t'=tg,2tg,3tg,...

where w and ds are the height and the width of the Gaussians, and s; = S(z(t)) is the value
of the collective variable at time ¢. In the course of time, this potential is filling the minima
on the free energy surface, i.e. the biased energy surface (sum of the Gaussians and the
free energy) as a function of the collective variable(s) S is becoming constant. So, the MD
protocol exhibits a kind of memory via the changing potential-energy function — a concept
that was introduced earlier under the name “local elevation” (Huber et al., J. Comp. Aided
Molec. Design 1994).

This approach can be exploited to explore new reaction pathways and accelerate rare
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FIG. 72: Metadynamics.

events, and also to estimate the free energies efficiently. The features of metadynamics:

e The system escapes a local free energy minimum through the lowest free-energy saddle

point.

e The dynamics continues, and all the free-energy profile is filled with Gaussians. At
the end, the sum of the Gaussians provides the negative of the free energy. This latter
statement is correct if the dynamics along S is much slower than the dynamics along

the remaining (transversal) degrees of freedom.

The crucial point of the method is to identify the variables that are of interest and that
are difficult to sample, since the stable minima in the space spanned by these variables
are separated by barriers that cannot be cleared in the available simulation time. These
variables S(x) are functions of the coordinates of the system; practical applications allow
the definition of up to three such variables, and the choice depend on the process being
studied. We can think for instance of the principal modes of motion obtained with principal
component analysis (covariance analysis, essential dynamics). However, the choice of S may

be far from trivial.

The metadynamics method may be also classified as a variant of the adaptive umbrella

sampling approach.

D. Locally enhanced sampling

Quotation from the Amber website, by David A. Case (www.ambermd.org).



Locally enhanced sampling (LES) is a mean-field technique which allows selective appli-
cation of additional computational effort to a portion of the system, increasing the sampling
of the region of interest (Elber & Karplus, 1990). The enhanced sampling is achieved by
replacing the region(s) of interest with multiple copies. These copies do not interact with
each other, and interact with the rest of the system in an average way. This average is an
average force or energy from all of the individual copy contributions, not one force or energy
from an average conformation of the copies.*” A key feature is that the energy function is
modified such that the energy is identical to that of the original system when all LES copies
have the same coordinates.

During the simulation, the copies are free to move apart and explore different regions
of conformational space, thereby increasing the statistical sampling. This means that one
can obtain multiple trajectories for the region of interest while carrying out only a single
simulation. If the LES region is a small part of the system (such as a peptide in solution, or
a loop in a protein), then the additional computational effort from the added LES particles
will be a small percentage of the total number of atoms, and the multiple trajectories will
be obtained with a small additional computational effort.

Perhaps the most useful feature of the LES method is that it has been shown that
the barriers to conformational transitions in a LES system are reduced as compared to
the original system, resulting in more frequent conformational changes (Roitberg & Elber,
1991). This can be rationalized with a simple model: Imagine a protein side chain that
has been replaced with 2 copies. At finite temperatures, these copies will have different
conformations. Now consider the interaction of another part of the system with this region
— previously, steric conflicts or other unfavorable interactions may have created high barriers.
Now, however, the rest of the system sees each of these 2 copies with a scaling factor of %
Whereas one copy is in an unfavorable conformation, the other may not be, and the effective
barrier with a distribution of copies is lower than with a single copy (as in normal MD).

Another way to consider the LES copies is that they represent an intermediate state
between a normal simulation where each point in time represents a single structure, and a

purely continuum model where the probability distribution of regions of interest are repre-

47 Note the difference! The forces from all copies are calculated and their average is then taken. No average

structure or the like is calculated.



sented by a continuous function. The atoms outside a LES region interact with that region
as if it were (in the limit of many copies) a continuum, with a probability scaling given to
all interactions. Therefore, the most unfavorable interactions are reduced in magnitude as
compared to the original system.

Another major advantage of LES over alternate methods to reduce barriers or improve
sampling is that it is compatible with current state-of-the-art simulation techniques such as
molecular dynamics in explicit aqueous solvation (problems for techniques such as Monte
Carlo or genetic algorithms) and the particle-mesh Ewald technique for accurate treatment
of long-range electrostatic interactions. Higher temperatures can increase rates of barrier
crossing, but one is then faced with issues related to solvent behavior at higher tempera-
tures, maintaining proper densities and pressures, stability of the molecule of interest at the
elevated temperature, and so on. LES gives more direct control over which regions should
be enhanced, and also provides other benefits such as improvement in statistical sampling

discussed above.



XIII. OTHER GENERATORS OF CONFIGURATIONS
A. MD simulation of hard bodies

The first MD simulation of a system in the condensed phase used the model of hard
spheres (Alder & Wainwright, J. Chem. Phys. 1957). Representing a first step from the
ideal gas model towards realistic molecules, this model has been a valuable tool above all in

statistical thermodynamics, deriving e.g. equations of state and virial expansions.

1. The hard-sphere potential

The potential is a pairwise one. The potential energy of a system of two hard spheres
with radius R equals zero for distances larger than the diameter of the spheres and rising
above all bounds (infinity) for shorter distances when the spheres overlap:

0 ifr>2R
V(r) = (XII1.1)

+o00 otherwise
The potential is discontinuous and thus not differentiable, and this is different from the
potentials typically used in biomolecular simulation.
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FIG. 73: The potentials of hard spheres, square well and Lennard-Jones.

If we wished to proceed further towards realistic description, however preserving the
simplicity of the interaction model, we would probably opt for the so-called square well

model, which features a region of negative potential energy (corresponding to attraction)



starting at the contact distance 2R. Clearly, such an approximation goes in the direction of
the Lennard-Jones potential, which describes the behavior of nonpolar fluid very well.*8
Hard-convex-body potential is another extension used in statistical thermodynamics.
Still, the potential energy function is discontious — zero if the bodies do not intersect and
infinity if they do. The enhancement is represented by the shape of the bodies, which is

not spherical anymore but rather ellipsoidal or the like. Such a shape may better describe

diatomic molecules for instance.

2. Simulation protocol

As stated in the previous chapters a few times, the integration of Newton’s equations
motion requires the used (pair) potential to be continuous and possibly smooth (i.e. with
continuous first derivative). If this is not the case, then the atoms will experience sudden
‘jumps’ in forces, leading to unstable simulations and wrong sampling of the configuration

space, see Fig. 74.
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FIG. 74: If we attempted to simulate hard spheres with an integrator, we would see an explosion
caused by a sudden occurence of an overlap of atoms, much the same as in the case of a simulation

with continuous potential and a way too large time step (center). However, with hard spheres, an

arbitrarily short time step would be still too long.

The situation with the hard-body potential is even worse, as there is an infinitely high
jump of potential energy at the edge of the body (particle). What would a simulation of
hard spheres with (say) the Verlet integrator look like? There are no forces in any initial
configuration, and so the spheres move with their initial velocities until, all of a sudden, two
spheres start to overlap. At that very moment, the energy and the forces are infinite, and

the simulation crashes.

48 This is probably the reason why physical chemists like argon so much. The simple LJ potential describes

argon extremely accurately.



The simulation protocol for a system of particles interacting with a hard-body potential
has to be adjusted to the discontinous character of this potential. The spheres (bodies)
move along straight lines between collisions, which are perfectly elastic and instantaneous.

A simulation of such a system proceeds as follows:

1. Identify the next pair of spheres (bodies) to collide, and calculate when this collision

will occur.

2. Calculate the positions of all spheres at the collision time, using the principle of con-

servation of linear momentum and kinetic energy.
3. Determine the new velocities of the two spheres after collision.
4. Repeat from start.

Obviously, no further approximations are involved in this protocol, and a simulation will
be exact within the model of hard spheres. (This is different with continuous potentials,
where approximations have to be made, usually via a stepwise integration of the equations
of motion.)

The potential energy is constant (zero) throughout the simulation. Thus, the conservation
of total energy forces the conservation of kinetic energy, meaning that in any simulation with

hard spheres, the temperature is actually constant.

B. Monte Carlo approach

In many (if not most) of the applications of molecular dynamics, the main objective is
not to study how the molecular system evolves in time, but rather to generate as many
configurations of the system of possible in order to sample the configuration space and
estimate some thermodynamic quantites. MD is not the only possibility to do this, and we
are actually free to design a method to generate the needed configurations as long as these
sample the correct (e.g. canonical ensemble).

Another possibility are the Monte Carlo methods (MC). Actually, an MC technique was
the first technique used to perform a computer simulation of a molecular system. The not-
too-chemically sounding name comes from the crucial role that random numbers play in the

MC algorithm.



1. Monte Carlo integration

As mentioned above, one of the major goals if molecular simulations is to calculate
the thermodynamic properties. Formally, this is done by the integration over the entire
configuration space. Now then, how could we use a method based on randomness to integrate

a function?

s

FIG. 75: Integration with the trapezoidal rule (left) and with Monte Carlo (right).

An example is shown in Fig. 75 — the task is to estimate the area under the curve, or
to integrate the function. This could be done by the application of the trapezium rule.
However, this method (as well as all the other commonly used ones) comes into trouble if
we have to integrate a function of many variables, as is always the case in the studies of
molecular systems. Here, we can make use of an alternative idea: Generate N randomly
placed points within a rectangle, and count how many points (n) lie under the curve. Then,
the ratio n/N approximates the ratio of area under the curve to the area of the rectangle.*’

Importantly, it is straightforward to extend this idea to a problem in many dimensions —
and we can make use of this in studies of molecular systems. Conveniently, the integration
will be made even more straightforward if we are able to generate the configurations with the
right probability, i.e. sampling the correct thermodynamic (e.g. canonical) ensemble. Such
importance sampling will make it possible to average the thermodynamics quantity trivially

over the ensemble of generated configurations.

49 Apply the Monte Carlo idea to calculate 7 as follows: Generate pairs of random number between 0 and
1 (z,y). Count the pairs for which 22 + y? < 1, i.e. the point (z,y) lies within the circle centered at (0,0)

with a radius of 1. The ratio of this number to the total number of pairs approximates the value of 7/4.



2. Metropolis’ method

A typical MC simulation of a molecular system generates a sequence of configurations
in an iterative way — in every iteration, one configuration is produced. Usually, a new
configuration is constructed from the current one by randomly shifting a single randomly
chosen atom (or, in general, particle). In practice, the new set of Cartesian coordinates is

calculated with random numbers £ € (0,1) as

Tpew = T + (26 — 1) - or
Ynew = Y + (25 - ]-) - or (XIIIQ)
Znew = 2+ (26 — 1) - or

where dr is the maximum allowed displacement.

Then, a test is performed to inspect if this configuration shall be accepted or not. To
do this, potential energy of the entire molecular system is calculated. The calculation can
be optimized by realizing that only a small part of the system (a single particle) has moved
since the previous iteration. Consequently, only a small part of the usually considered pair
interactions changes.

The acceptance probability of the trial configuration is obtained from the current potential
energy U and that of the trial configuration Uy, as

1 if Upew < U

pP= (XIIL3)

exp [—%} otherwise

For P < 1, a (pseudo)random number is drawn from the interval (0,1). The trial config-
uration is accepted if P is larger than this random number. If it is not the case, the trial
configuration is discarded and a new one is generated by modifying the coordinates of the
current configuration.

The percentage of accepted configurations (among all the generated) is governed by the
maximum allowed displacement dr, which is an adjustable parameter. It is usually chosen so
that % to % of all configurations are accepted. Such acceptance ratio was shown to lead to the
most efficient sampling of the configuration space. If §r is too small, then most configurations
are accepted though, but the configurations are very similar and the sampling is slow. On

the other hand, if dr is too large, then too many trial configurations are rejected. Often,



or is adjusted in the course of the simulation in order to reach a certain target acceptance
ratio.

There are some modifications possible to the described recipe. Instead of selecting the
atom to move randomly, it is possible to move the atoms sequentially, in a preset order. This
way, one less random number per iteration has to be obtained. Alternatively, several atoms
can be moved at once, instead of a single atom. With an appropriate maximum allowed

displacement, this procedure may sample the configuration space very efficiently.

3. Intermezzo: generators of pseudorandom numbers

A Monte Carlo algorithm requires several random numbers to be obtained in every it-
eration, and since many steps have to be performed in a typical simulation (where many
may mean millions or so), it is necessary to have a reliable and efficient source of random
numbers. It would be most convenient to be able to ‘calculate’ random numbers in some
way. This is actually a paradoxical requirement: computers are intrinsically deterministic
devices, which are designed to deliver results that are determined by the input.

However, there are ways to generate sequences of ‘pseudorandom’ numbers, which are
actually not random in the true meaning of the word. Still, they are independent enough of
each other and have the right statistical properties, which makes them useful for MC.

Most commonly used are the linear congruential generators, which produce sequences of
pseudorandom numbers. A following number in the sequence &;,4 is obtained by taking the
previous number &;, multiplying by a constant (a), adding another constant (b) and taking
the remainder when dividing by yet another constant (m). Obviously, an initial value (‘seed’)
has to be given to the generator (the system time on the computer is often used). If ‘real’
values are requested rather than integers, the obtained number is divided by the modulus

m (to get to the interval (0,1)).

& = seed
&1 = (a-& +b) modm (XTIIL.4)

Here, it is essential to choose ‘good’ values of a, b and m. If they are chosen carefully, then
the generator will produce all possible values 0,...,m — 1 and the sequence does not start

to repeat itself until m numbers have been generated. If they are not, the sequence starts



to repeat much earlier, and there is not much randomness in there at all. A disadvantage of
these generators is that the generated points in an /N-dimensional space are not distributed
uniformly in the space but rather lie on at most {/m (N — 1)-dimensional planes (i.e. on

straight lines if we have a 2D space). If the generator is poor, the number of these planes is

much smaller than {/m.?°

a=10924, b=11830, m=32769 a=171, b=11213, m=53125
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FIG. 76: A bad and a good generator of pseudorandom numbers. Each point (rnd1,rnd2) is a pair

of consecutive numbers in the generated sequence.

In spite of the mentioned disadvantages, linear congruential generators are often used in

MC simulations because of their extreme simplicity and thus computational efficiency. The
classes of pseudorandom number generators of higher quality include the linear feedback
shift register generators (LFSR) or Mersenne twister (MT). LFSR uses several bits from the
current number to generate a new sequence of bits constituting a newly generated number,
and it does not suffer from the cumulation of the generated numbers on hyperplanes.
MT is the current state of the art among generators and outperforms the previously men-
tioned e.g. by an extremely long period of 297 — 1 and no cumulation of numbers on
hyperplanes in spaces with up to 623 dimensions. In a modified form, it is even suitable for
cryptographic applications.

Alternative generators — from WIKIPEDIA: In Unix-like operating systems (with Linux
being the first), /dev/random (or /dev/urandom) is a special file that serves as a random
number generator or as a pseudorandom number generator. It allows access to environmental

noise collected from device drivers and other sources.

50 An example of such generator is RANDU: & is odd and &1 = 65539 - & mod 23'. All generated values
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are odd, the period is only and the points (§;, 41, &i+2) cumulate on as few as 15 planes in space.



4. Monte Carlo simulation of molecules

The easiest implementation of MC is for systems of monoatomic molecules, because it is
only necessary to deal with the translational degrees of freedom. In polyatomic molecules,
the implementation is more complex, and the situation is most difficult if there is much
conformational flexibility in the molecules. Then, the internal degrees of freedom have to be
free to vary, but this may often lead to an overlap of atoms accompanied by energy growing
steeply. The ratio of acceptance of configurations would be extremely low.

It is still quite easy to simulate rigid molecules with MC. Apart from their position in
space, their orientation has to be varied. This is accomplished by a rotation along one of
the Cartesian axes (x, y or z) by a randomly chosen angle. There is some trigonometry to

do to obtain the position of the molecule in the trial configuration.

5. Monte Carlo simulation of polymers

Many approximative models of polymers have been developed that are suitable for MC
simulation. A class of convenient representations of polymers is that of a chain of monomer
units, which are elementary particles (without further internal structure).

Lattice models are very simple and thus useful for very efficient studies of polymers. Here,
monomer units connected with a bond can occupy neighboring lattice points in a cubic or

tetrahedral lattice (Fig. 77). The used expressions for potential energy are usually very

FIG. 77: Monte Carlo of a polymer — cubic (left) and diamond-like (right) lattices.

simple, which is partially forced by the simple structure of the model but also required to
evaluate the energy rapidly and to sample the configuration space efficiently. An example
of a more realistic and thus more complex lattice model is the ‘bond fluctuation’ model,

where the lattice is finer-grained with respect to the bond length and the bonds between



the particles (which actually stand for several covalent bonds each) are not constrained to

lie on the lattice edges (Fig. 78).

FIG. 78: Monte Carlo of a polymer — the bond fluctuation model. A single ‘effective’ bond in the

model (right) consist of three covalent bonds along the chain of the real polymer molecule (left).

The simplest type of simulation of such a polmer chain is a random walk. Here, the chain
grows in a random direction until the desired length is achieved. The first implementation
does not consider the excluded volume of the previous segments, and the chain is free to cross
itself. It is possible to evaluate various structural properties with this model, by averaging
the results over many ‘simulations.” For instance, the end-to-end distance R,, and the radius

of gyration s, are obtained for a chain composed of n bonds with length [ as

<Ri>o =n-l’
(s*), = (R3) /6 (XIIL5)

While the missing description of excluded volume may seem to be a serious flaw at the first
sight, this may not be always the case. In the so-called theta state, the effects of excluded
volume and attractive interactions within the polymer and between the polymer and the
solvent exactly cancel (also, the second virial coefficient vanishes), and the expressions de-
rived with the simple random walk are actually valid. (The calculated parameters are often
designated with the subscript ‘0).

The excluded volume can be taken into account by not allowing the chain to extend to
the already occupied lattice points — self-avoiding walk (Fig. 79). This model was used
to generate all possible configurations of a polymer of given length, in order to evaluate
the partition function leading to all thermodynamic properties. The ‘potential energy’ may

be calculated with a reasonable model of interaction of the nearby monomer units. Also,



it is possible to consider copolymers consisting of two different types of monomer units.
Extreme attention has been paid to the structural properties again; an example result is the

end-to-end distance in a limit of large number of elements of

(R2) ~ 1% 1 (XII1.6)
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FIG. 79: Monte Carlo of a polymer — self-avoiding walk.

While it need to be difficult to generate a configuration of the polymer chain, it can be
nearly impossible to modify this configuration e.g. with a MC engine, especially for densely
packed polymers. A widely used algorithm in MC simulations, which is not limited to lattice
models, is the slithering snake model. Here, one end of the polymer chain is randomly chosen
as the head, and an attempt is made to connect a new monomer unit to it. If the attempt
is successful, one monomer is removed from the other end. The whole procedure is then
repeated.

A natural way to improve the lattice models is to leave the lattice. The simplest of such
‘continuous’ polymer models consists of a string of connected beads (particles), which are
freely connected and interacting with each other with a sperically symmetric potential (like
Lennard-Jones). Note that the beads do not generally correspond to monomer units and so
the links are not the chemical bonds between monomers. The links may be either of fixed
length or free to vary with a harmonic potential.

The most unrealistic property of such a model is continuous variation of link angles.
The freely rotating chain model improves this behavior by holding the link angles fixed
while allowing free rotation about the links (i.e. continuous variation of ‘dihedral angles’).
Obviously, this will affect the overall structure of the polymer chain compared to the freely

connected one; the characteristic ratio

¢, = fin) (XIIL.7)



indicating the extension of the chain will converge to the value of

B 1 — cos®

Coo = ————
1+ cosé

(XIIL8)

with bond angle 6. For instance, C'y, ~ 2 for a tetrahedral bond angle of 109°.

The rotational isomeric state model (RIS) by Flory (1969) improves the description by
allowing every link to adopt only one of a defined set of rotational states (i.e. dihedral
angles). These states usually correspond to minima of potential energy, for instance the
trans, gauche(+) and gauche(-) conformations for a polyalkane chain. An elegant feature of
the model is that it uses various matrices to described conformation-dependent properties.
RIS is the best known one of the ‘approximative’ ways to describe polymer chains. It can
be conveniently combined with MC simulation to estimate a wide range of properties. In
such a simulation, conformations of the chain are generated with probability distributions
corresponding to their statistical weights, which are a component of the RIS model (in a
matrix form). With u,, being the statistical weight of dihedral state b following a link in the
dihedral state a, the matrix of statistical weights for an example of polyalkane chain may

look like this:

Ut utg+ utgf 1.00 0.54 0.54
U= Ugts Ugrgt Ugrg— | = | 1.00 0.54 0.05 (XIII.9)
Ut Ug-gt Uy g 1.00 0.05 0.54

Starting on one end of the chain, a conformation is generated by calculating the dihedral
angles sequentially, until the whole chain is done. The probability of each dihedral angle
is determined by the a priori probabilities of the dihedral states and on the state of the
previous dihedral angle; a Monte Carlo engine is then used to select one of the values.

In a typical study, a large number of such chain will be grown, and the properties of
interested will be calculated for each of them and averaged. The RIS-MC approach can be
used to estimate properties like pair correlation functions (for atoms within the polymer

chain), scattering functions and the force—elongation profiles.

Black-and-white figures were reprinted from Leach, Molecular Modelling.



XIV. STRUCTURE OF PROTEINS AND DRUG DESIGN

A. Basic principles of protein structure

The structure of protein molecules is not at all regular but rather far more complex.
However, there are structural patterns that occur frequently. These secondary structure
elements include alpha-helix and beta-strand as well as some more rarely occurring kinds of
helices and several kinds of loops and turns, which exhibit certain structural patterns in spite
of their generally less regular composition. These elementary structures are held together
by means of hydrogen bonds. Tertiary structure is the relative orientation of secondary
structural patterns, like e.g. beta barrel. Quaternary structure constitutes of the way the
individual subunits of the protein — separated molecules — combine to form the native, active
state of a multi-subunit protein.

The structure of a polypeptide chain can be characterized by the dihedral angles along
the backbone. Ignoring the usually planar configuration on the amide bond, there are
two dihedral angles per amino acid: ¢ (along the N-C* bond) and ¢ (along C*-~C). The
Ramachandran plot (1963) is a way to record this structure in a two-dimensional diagram
(Fig. 80). In a structural analysis of a protein, any amino acids lying outside of the common

regions in the Ramachandran plot would be paid special attention.
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FIG. 80: Ramachandran plot obtained by an analysis of a protein databank.

Quite independently of the secondary structure elements, it is a general rule that the
surface of soluble (globular) proteins is formed by polar and charged amino acids, whereas
non-polar AAs (Trp, Phe, Leu, Ile, Val) tend to cumulate in the interior of the protein.
This observation is said to be the consequence of the hydrophobic effect, which is one of

the most important factors driving the stability of a protein. As a phenomenon, it still not



completely resolved, yet it is generally explained with entropic considerations. When the
protein is folding, the free surface of the (bulky) non-polar AA side chains is decreasing.
Thus, some of the water molecules that had previously formed a kind of cage around these
AAs are being freed to leave to the bulk water (Fig. 81), bringing on an increase of entropy.
This contribution is believed to dominate the entire free energy of the process of creation of

the native structure of the protein — the folding of the protein.
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FIG. 81: The hydrophobic effect.

Another large group is the trans-membrane proteins. Typically, non-polar (hydrophobic)
AA side chains are located on the surface of the protein in the membrane-spanning region,
in order to match the hydrophobic character of the environment in the interior of the lipid
membrane. On the other hand, charged and polar residues will be found in the parts of the
protein exposed to the aqueous solution. The resolution of structure of membrane proteins
is generally a very hard problem due to the extreme difficulties with crystallization of such

proteins.

B. Comparative/homology modeling

Comparative modeling is a method to obtain a reasonable model of protein structure. The
3D structure is built on the basis of comparison of the sequence to that of (a) certain other
(homologous) protein(s). Here, we understand the phenomenon of ‘homology’ as structural
similarity in general, although homologous proteins are defined as such that have a common
evolutionary origin. The fundamental underlying idea is that the 3D structure of proteins
with similar sequence is similar. Expressed more strongly: even though the AA sequence
of homo-logous proteins differs, sometimes by a seemingly large margin, their 3D structures
may still be nearly identical. Obviously, this need not necessarily be the case, yet still it
works often.

The procedure of creating a homology model is as follows:



Chymotrypsin EDWVVTAARC .......... GVTTSDVVVA GEFDQGLETE DTQVLKIGKV

Trypsin SQWVVSAARIC .......... YKSGIQVRLG EDNINVVEGN E.QFISASKS
IC LLYPPWDKNF TVDDLLVRIG KHSRTRYERK VEKISMLDKI

Thrombin DRWVLTA

s Trypsin IVHPSYN.SN TLNNMIMLIK LKSAASLNSR VASISLP... TSCA..SAGT
% Chymotrypsin FKNPKFS.IL TVRNMITLLK LATPAQFSET VSAVCLP... SADEDFPAGM
Thrombin YIHPRYNWKE NLDRBIALLK LKRPIELSDY IHPVCLPDKQ TAAKLLHAGF
Trypsin QCLISGWGN. ....TKSSGT SYPDVLKCLK APILSDSSCK SAYPGQITSN
Chymotrypsin LCATTGWGK. ....TKYNAL KTPDKLQQAT LPIVSNTDCR KYWGSRVTDV
Thrombin KGRVTGWGNR RETWTTSVAE VQPSVLQVVN LPLVERPVCK ASTRIRITDN

Chymotrypsin MICAG..ASG ...VSSCMGD GPLV. .CQ KNGAWTLAGI VSWGSSTCST
Thrombin GPFVMKSP YNNRWYQMGI VSWGEGCDRD

Trypsin MFCAGYLEGG ...KDSCQGD GPVV..CS GK....LQGI VSWGSGCAQK
MFCAGYKPGE GKRGDACEGD

FIG. 82: The 3D structure and the AA sequence of three homologous proteins.

1. Identify a template — i.e. a protein that we consider homologous to the protein that

we want to determine the structure of. There may be more than one template.

2. Produce the alignment of the sequences. Literally, the two (or more) sequences are to

be laid next to each other so that their ‘match’ is as good as possible.

3. Identify which regions are structurally conserved between/among the sequences, and

the regions of variable structure.

4. Create a model (coordinates) of the conserved region — ‘core’ - for the unknown struc-

ture, based on the known structure of the core of the template protein(s).

5. Generate the structure of the variable region(s) in the unknown structure. These are

often fragments with no regular secondary structure, like various loops.
6. Handle the AA side chains.

7. We are done. The structure should be verified and possibly further refined with e.g.

molecular mechanics.

1. Identification of the template

The basic assumption of the entire procedure is the existence of a suitable template — a
protein that we expect to be structurally very similar to the unknown one. Having only the
AA sequence as input, we have to rely on some kind of comparison of the sequence with a
database of proteins with known 3D structure. Thus, we will take one or more proteins with

certain sequence similarity with the unknown.



Also, it may be of interest to look for a possible function of an uncharacterized protein,
for which only the sequence is known (for instance derived from a DNA sequence). In such a
case, we would look for fragments of sequences that are strongly conserved in certain protein

families — these are typically AA side chains binding a cofactor or catalytic sites.

2. Alignment of the sequences

The procedure of aligning the sequences along each other in order to obtain a best-
possible match may look simple at the first sight though, but actually it is a crucial and
highly non-trivial step in the development of a structural model. Several algorithms are
available for alignment, and the choice of the algorithm is one of the tasks that need to be
performed, together with the choice of the scoring method and the potential application of
gap penalties.

The many algorithms are generally based on the so-called dynamic programming al-
gorithm (Needleman & Wunsch, 1970). The available possibilities are FASTA, Smith-
Waterman and BLASTP (which does not handle gaps). In the words of Leach, FASTA
works like this (see Fig. 83):

A locate regions of identity
B scan these regions using a scoring matrix and save the best ones
C optimally join initial regions to give a single alignment

D recalculate an optimized alignment centered around the highest scoring initial region
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FIG. 83: Creating an alignment with FASTA.



3. Scoring of the alignment

A scoring method is used to characterize the quality of alignment of the specific sequences
with a single number. In general, if an AA is identical in the aligned sequences, the contri-
bution to the score is high, while it may be smaller if the AAs are chemically similar but not
identical (conservative substitution), and it should be unfavorable if there are very different

AAs aligned. There are several possibilities to perform the scoring:
e Identity — only identical AAs have favorable score.

e Genetic code — the score is given by the number of nucleobases in DNA /RNA that are
needed to be changed to change one of the aligned AAs to the other.

e Chemical similarity — not only identical AAs in the aligned sequences will score favor-
ably, but it is still OK (i.e. the score is favorable) if physico-chemically ‘similar’ AAs
are aligned. That is, if Glu is in one sequence and Asp in the other, or two different

non-polar aliphatic AAs, etc.

e Observed substitutions — this is based on the analysis of protein databases and the

frequency of mutations of AAs in the alignment of sequences in these databases.

The schemes based on observed substitutions are considered to be the best choice to
score alignments of sequences. An early approach is the ‘Percentage of Acceptable point
Mutations’ (PAM, Dayhoff 1978) which give the probability of mutation of an AA to another
within a certain interval of evolutionary time. Varying this time, the scoring method would
find either short runs of highly conserved AAs or longer parts of the sequence with weaker
similarity. Another approach is to base the scoring matrices on alignments of 3D structures
rather than sequences alone; JO matrices are an example (Johnson & Overington 1993).
These matrices have the potential to render the similarities of 3D structures of different
sequences more sensitively — even if the sequences are formally less similar than required
with other approaches. Still, there is no ultimate scoring approach that performs best for
all possible alignment problems, and the selection of the scoring matrix remains non-trivial.
Further, one has to decide if a global alignment shall be made (with the whole length of the
sequences) or rather a local alignment, with just some fragments of the sequences; in such

case, the template(s) need not be of the same length as the unknown protein.



Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

AR ND CQ E G HTITUL KMF P S T WY V
Ala Aj13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9
Arg R|3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2
Asn N4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3
Asp D|5 3 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3
Cys C/2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2
Gm Q3 5 5 6 1 10 7 3 8 2 3 5 3 1 4 3 3 1 2 2
GmwE{ 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3
Gly G|{12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7
Hs Hl 2 5 5 4 2 7 4 2 1, 2 2 3 2 2 3 3 2 2 3 2
e 1T}3 2 2 2 2 2 2 2 2106 2 6 5 2 3 4 1 3 9
Len L| 6 4 4 3 2 6 4 3 5 1534 4 20 13 5 4 6 6 7 13
Lys K| 6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5
Met M| 1 1 1 r 0o 1 1 1 1 2 3 2 7 2 1 1 1 1 1 2
Phe ¥F|2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3
PoP|7 5 5 4 3 5 4 5 5 3 3 4 3 2 19 6 5 1 2 4
Ser S| 9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6
Thr T/ 8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6
TpW 0o 2 0 0O O O O O 10 1 O O 1 0 1 0 5 1 0
Tyr Y/ 1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2
Val V|7 4 4 4 4 4 4 5 4 1510 4 10 5 5 5 7 2 4 17

TABLE I: Mutation probability matrix for 250 PAM. Each ij element give the probability (in %)
that the amino acid in column j will have mutated to that in row ¢ by the end of the period of 250

PAM. (Based on Dayhoff 1978 and Leach.)

A usual component of alignment algorithms is the gap penalty. It is allowed that the
alignment of the sequences is discontinuous though, i.e. one or several amino acids is (are)
missing in one of the sequences (or, looking from the other side, there is (are) (an) extra
amino acid(s) in the other sequence(s)), but such a situation is penalized by an unfavorable
contribution to the score of such an alignment. The simplest possibility is to assign each of
such indels (insertions/deletions) a constant negative contribution. It is more common to
have a penalty of the form u + v - k for a gap of length & AAs, with the opening penalty u
being larger than the extension penalty v. Even more sophisticated are gap penalty schemes
that take into account if the gap lies within a secondary structure element (alpha helix, beta
sheet) or even within an active center of the protein — in such cases, the penalty would be

larger than if the gap is e.g. in solvent-exposed loops or other regions on the protein surface.



4. Structurally conserved/variable regions

As soon as the alignment is available, it has to be determined which regions of the sequence
will have the same 3D structure in the unknown protein as in the template(s) — conserved
regions (CR) — and the variable regions (VR), which will require special treatment in the
design of the 3D structure. This is more feasible if more than one template is available. CRs
are usually secondary-structure elements (alpha helices, beta sheets) and sites of binding of
cofactors or substrates. CRs of such character can be recognized even if only one template
is used.

If more than one template is used, then the templates are first aligned with each other.
The CRs are identified in the group of templates, and the alignment of the unknown protein

is performed after that.

5. Create the 3D structural model

The most straightforward part here is to generate the coordinates of the main-chain atoms
in the CRs — this is done simply by using the structure of the template(s). As for the side
chains, the situation is still easy if the AAs are identical in the unknown protein, or if they
are at least similar. If the difference of individual AAs in the CRs is more significant, then
a kind of systematic approach may be used to obtain a reasonable conformation of the side
chain — for instance, rotamer libraries may be used to generate the possible (most favorable)
conformations of the side chain, from which the most appropriate for the specific case may
be chosen.

Obviously, it is more difficult to create a good structural model for the VRs, which
often correspond e.g. to the solvent-exposed loops on the surface of the protein. In those
favorable cases where the sequence of the unknown protein is very similar to that in (one
of) the template(s), then the VR from the template may be copied. Is this not the case,
the particular sequence of AAs in the possible loop together with an additional couple of
AAs on both ends of the loop may be sought among all available proteins (and not only
the templates). It is quite likely here that the perfect match would not be achieved and
considerable effort in application of rotamer libraries would be necessary to find a good

model for the structure of the VR.



Databases of structure from comparative modeling — ModBase, SwissModel Repository.
Automated web-based comparative modeling — SwissModel via the ExPASy web server,

What If via the EMBL servers.

7. Bvaluation and refinement of the generated structure

The structure of protein molecules on atomic level has been the focus of research of a
huge number of experts in the recent decades, and a vast amount of knowledge has been
accumulated on this topic. Thus, the fundamental principles of protein structure are known
and quite well defined, providing us with the criteria that may be used to assess if the
generated 3D structure of the unknown protein can be considered reasonable. The criteria

may include:
e Conformation of the main chain in expected regions of the Ramachandran plot
e Planar peptide bonds

e Conformation of the side chains in accordance with those previously observed (rotamer

library)

e Polar groups should be hydrogen bonded to a suitable partner if they are buried in

the interior of the protein

e There should be a reasonable match between the hydrophilic and hydrophobic side
chains (and possibly H-bonding between polar side chains and the backbone)

e No unfavorable atom—atom contacts

e No empty space (hole) in the interior of the structure. (That would be an extremely

unfavorable situation.)

There are programs available to perform such an analysis — Procheck, 3D-Profiler. The out-
put of the analysis may be not only a single determinant describing the quality of the overall
3D structure, but it can even tell which parts of the structure have been modeled proba-
bly correctly and which are suspicious or unlikely, based on the empiric criteria mentioned

above.



As soon as such a simple analysis of the 3D structure has been performed and any revealed
problems have been resolved, the prepared structure may be subject to further refinement.
This would include energy minimization with molecular mechanics, and probably also molec-
ular dynamics. It may be of advantage to apply constraints to the coordinates of the CRs
at least at the start of the refinement, while the VRs are free to move. These constraints
would be (gradually) decreased/removed during the process. Also, it is advisable to consider
the solvent in these calculations (implicit/explicit, maybe PBC), and even crystallographic

water molecules in the CRs of the templates can be introduced.

C. DMolecular modeling in the drug design

One of the most exquisite applications of molecular modeling in the broadest sense is to
construct new chemical compounds interacting in a defined way with natural materials —
usually proteins but also nucleic acids, carbohydrates etc. A typical example of a task in the
‘drug design’ is to find a potent inhibitor of an enzyme, which does not interact harmfully
with other substances in the organism. This example immediately illustrates the difficulties
in drug design — mentioning just the most important requirements: the drug (medicine, for
instance) has to be a potent inhibitor of the given enzyme, but it must not interact with
other enzymes (which might be lethal), it must not decompose too early (before reaching the
desired destination), and its metabolites must not be (too) toxic. To find a substance that
meets all of these criteria is a truly hard business, and an expensive one — it is no exception
that the costs to develop and test a single drug reach several hundred million euros. Although
the purely experimental methodologies in this area have improved largely in the recent 20
years, involving approaches like the high-throughput screening, the exceptional amount of
time and money needed to invest on the experimental side make this field an ideal target of

computational approaches.

1. Molecular docking

In this chapter, we will concentrate on a typical pharmacological problem — to find a
(small) molecule (ligand, guest, key) that would bind to a protein (receptor, host, lock) as

strongly and specifically as possible. Thus, it is necessary (1) to generate the structure of a



complex of a known receptor (protein) and an up to this point unknown compound, and (2)
to evaluate this structure. A good news is that the binding site — binding pocket — is usually
known, as it is often the active or allosteric place of the protein that is to be inhibited.

Otherwise, there is bad news. The problem has many degrees of freedom — translation and
rotation of the ligand as well as its internal flexibility; the relaxation of protein structure
may be often neglected (although not always). A single molecule (or a small number of
molecules) can be docked manually, once the binding mode of a similar molecule is known.
It should be noted that even such a straightforward approach may fail, as even similar
molecules may sometimes bind in different ways (and with different strength).

There is a sequence of tasks to accomplish, fairly similar to that in the search for the

structure of a protein, indeed:

1. Take the compounds to test from somewhere — database of compounds, construction

from a database of moieties,. . .

2. For a selected compound, place the molecule in the binding site in the most favorable

way — orientation and conformation (if applicable — nearly always).

3. Evaluate the strength of the orientation. Accurate determination of binding free energy

is impossible, and so some kind of scoring is desired.

Various levels of approximation may be employed when searching for a molecule that
would fit a binding pocket. The simplest approach is to process a database of molecules
and consider each of them as rigid body; this would be attempted to fit into a rigid binding
pocket in the protein. This is the essence of the action of the Dock program, which first
creates a ‘negative image’ of the binding pocket as a unification of several spheres, and then
looks which molecule(s) would fit this shape best.

A natural expansion of this approach is to consider the flexibility of the ligand in some
way. To do so, it is possible to apply any means of exploring the configuration space of the
molecule — be it Monte Carlo, sometimes in conjunction with simulated annealing, simple
minimization of molecular dynamics. A simple (and thus robust) force field would be used
with any of these generators of configurations. Alternatively, a quite efficient approach is
the incremental construction of the ligand. Here, the ligand is partitioned into chemically

reasonable fragments; the first fragment is docked into the binding site in a usual way, and



the other fragments are ‘grown’ consecutively. This provides a natural possibility to account
for the conformational flexibility of the molecule, regarding the relative orientation of the
individual fragments.

We can already see the problem of docking very well — not at all surprisingly, it is all
about sampling. There is no way to try to do MD for every candidate molecule, because
(1) MD takes much longer than we can afford having to process a lot of molecules, and (2)
MD could work probably only for quite rigid molecules and a binding pocket which does not
constrain the movement of the ligand, which is usually not the case. If our goal is to dock a
single, specific molecule, we can afford a particularly thorough search that would probably
involve MD, possibly with a king of biasing potentials. However, if we have to dock and
assess many candidate ligands, simpler approaches have to be chosen. The current state of
the art is to consider the flexibility of the ligands, while ways to describe the conformational

flexibility of the protein (on the level of side chains) are under development.

2. Scoring functions for docking

If we have a plenty of molecules to evaluate, we need an extraordinaly efficient way to
quantify the strength of the binding in order (1) to find the right binding mode of each
ligand, and (2) to compare the strength of binding of various ligands. So, the quantity of
interest here is the binding free energy. We know many methods to evaluate free energies,
but the problem is that these procedures are many orders of magnitude slower than required
for docking. What we need here is a simple additive function to approximate the binding
free energy, which would give a result rapidly, in a single step. Such scoring function would

have the form
AGbind - AC;solvent + AC;conf + ACTYint + AC;rot + AGt/r + AC:vib (lel)

AGyovent covers the change of hydration effects during the binding reaction — the different
hydration of the isolated ligand and protein and that of the complex. AGons describes the
change of conformation of the ligand upon binding — the ‘deformation energy’; the shape of
the binding pocket may constrain the ligand to another conformation than what is favored
with a free ligand, and this costs energy. (The conformation of the protein is usually ignored,

or considered unchanged.) AGj,, — the ‘interaction energy’ — a favorable contribution to free



energy stemming from the specific interactions between the ligand and the protein. AG,
is the loss of entropy (AG = —T - AS) brought about by the frozen rotations around
single bonds within both the bound ligand and the protein. It is possible to approximate
this contribution as +RT log3 = 0.7 kcal/mol per rotatable bond with three equienergetic
states (trans and 2x gauche). AGy, is the loss of translational and rotational entropy upon
association of two molecules, which is approximately constant for all ligands of similar size,
therefore it need not be considered when comparing the ligands. AG.,;, should describe the
change of vibrational modes, which is difficult to estimate and is often ignored.

As a result, there is a kind of force field for the free energy of binding. The problem is
that in spite of its approximative character, this expression may be still computationally
too costly to evaluate for a huge number of ligands that is usually to be processed. For this
reason, the many ways proposed so far to estimate the contributions to the free energy are
usually very simple, looking over-simplified in comparison with molecular-mechanics force
fields. An illustrative example of such a simplified approach is the following equation:

AG = AGy + AGupona = Y f(R,0) + AGionpair - Y [ (R, )

Hbonds ionpairs

+ ACllipo : Alipo + AGrot : Nrot (XIV2)

where AG( — a constant term; AGpponq corresponds to an ideal hydrogen bond, and f(R, )
is a penalty function for a realistic hydrogen bond of length R and angle «; analogic quantities
(AGionpair and f'(R, «v)) apply for ionic contacts. AGyp, is the contribution from hydrophobic
interaction, considered as proportional to the area of the non-polar surface of the molecule
Alipo; Nyot i the number of rotatable bonds in the ligand that are being frozen upon binding,
contributing AG,et. (Béhm, 1994).

A number of similar functions followed this study. These involved for instance the par-
titioning of the surface areas of both the proteins and the ligand into polar and non-polar
regions, and assigning different parameters to the interactions of different kinds of regions
(polar-polar, polar-nonpolar, nonpolar-nonpolar). Also, statistical techniques were used to
derive the scoring function and the parameters. The problem is that these functions only
describe well those ligands that bind tightly to the protein. Modestly binding ligands, which
are of increasing interest in docking studies, are more poorly described by such functions.
A possibility to resolve this issue is the ‘consensus scoring’ — combining results from several

scoring functions, which was shown to perform better than any single scoring functions.



In all studies aimed at the strength of binding expressed in terms of the binding free
energy, it must be constantly borne in mind that a change (error) of binding free energy
of 1.4 kcal/mol corresponds to a ten-fold in/decrease of equilibrium constant of binding.
In other words, as little as 4.2 kcal/mol of binding free energy lies between a micro- and
a nanomolar inhibitor of a protein, which is figuratively infinite difference. Therefore, the

requirements on the accuracy of the scoring function are actually quite big.

3. De novo design of ligands

While it is very often useful to search a database of molecules for a suitable ligand, there is
still a chance to miss the ‘ideal’ ligand simply because no such compound has been included
in the database. To avoid such a failure, it may be a better choice to construct the ligand
‘from scratch’ — without relying on the content of a database. There are two basic types
of the de novo design: In the ‘outside—in’ approach, the binding site is first analyzed and
tightly-binding ligand fragments are proposed. Then, they are connected together, possibly
using a database of molecular linkers, providing a molecular skeleton of the ligand, which
may be converted to an actual molecule. The ‘inside—out’ approach constitutes of ‘growing’

the ligand in the binding pocket, driven by a search algorithm with a scoring function.

l Position fragments in empty site
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