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I. SEMI-EMPIRICAL DFT: SCC-DFTB

DFT can treat up to 100 atoms in routine applications, sometimes even more and about

several ps in MD simulations. Very often, one would like to go to larger systems, therefore

approximations to DFT are required.

A. Non-selfconsistent schemes

To get started, consider a case, where you know the ground state density ρ0 already to

sufficient accuracy. In this case, one can omit the self consistent solution of the KS equations

and get the orbitals immediately through:

[
−1

2
∇2 + veff [ρ0]

]
φi = εiφi

(ρ0 stands for a proper chosen input density in the following). This saves a factor of 5 -10

already, however, it is the starting point for further approximations.

Consider a minimal basis set consisting of atomic orbitals, i.e. ηµ = 2s, 2px, 2py, 2pz

for first row elements (we omit the core states in the following, since they are in a good
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approximation chemically inactive) and ηµ = 1s for H. With the basis set expansion

φi =
∑
µ

ciµηµ

and the Hamiltonian

Ĥ[ρ0] = T̂ + veff [ρ0]

we find:

∑
µ

ciµĤ[ρ0]|ηµ >= εi
∑
µ

ciµ|ηµ > (1)

Multiplication with < ην |

∑
µ

ciµ < ην |Ĥ[ρ0]|ηµ >= εi
∑
µ

ciµ < ην |ηµ > (2)

or in matrix notation

HC = SCε (3)

This means, we just have to solve the eigenvalue equation once, i.e. we have to diagonalize

the Hamilton matrix Hµν =< ην |Ĥ[ρ0]|ηµ >. Note, that our basis set is non-orthogonal,

i.e. the overlap matrix Sµν =< ην |ηµ > appears in the eigenvalue equations.

1. Empirical Tight-Binding: ETB or Hückel Theory

In empirical schemes, the basis functions are taken to be orthogonal, i.e. Sµν = δµν .

Background is the so called Löwdin orthogonalization, where we get orthonormal

orbitals through:

η′ = S1/2η

Introducing orthonormal orbitals means multiplying with S−1/2 and inserting a ’1’:

S−1/2HS−1/2S1/2C = S−1/2S1/2S1/2Cε
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to get the orthonormal equations (C′ = S1/2C):

H′C′ = C′ε

Introducing orthonormal orbitals means effectively changing the Hamiltonian. And

this is convenient, since in empirical schemes the Hamitonmatrix is completely fitted

to empirical data, e.g. for Carbon to the solid state band-structures of several crystal

structures (diamont, graphite, bcc etc.), or, in Hückel theory, to properties of Hydrocarbons.

Diagonalization leads to the one-particle energies εi, i.e. to the so called electronic

energy:

Eelec =
∑
i

εi

If we compare this to the total energy in DFT,

E[ρ] =
occ∑
i

εi −
1

2

∫
ρ0(r)ρ0(r

′)

|r − r′|
drdr′ + Exc[ρ0]−

∫
vxc(r)ρ0(r)dr +

1

2

∑
αβ

ZαZβ
Rαβ

(4)

it is obvious, that a big part of energy is missing, the so called double-counting and core-

core repulsion terms in DFT. First of all, it is interesting to note, that the double counting

terms depend on the input/reference density ρ0 only. The XC parts are hard to evaluate,

however, in GGA we can say that they decay exponentially due to the exponential decay of

the density-overlap. If we assume an atomic density decomposition, ρ =
∑

α ρα, the coulomb

contributions
1

2

∑
αβ

[
ZαZβ
Rαβ

−
∫
ρα(r)ρβ(r′)

|r − r′|
drdr′

]
show an exponential decay as well!

Therefore, first ETB models had the form:

Etot =
∑
i

εi +
1

2

∑
αβ

Uαβ

with the two-body terms Uαβ being exponentials fitted to reproduce e.g. geometries, vibra-

tional frequencies and reaction energies of suitable systems.
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2. Density Functional Tight-Binding

The derivation of parameters via fitting is a quite complicated process. If one could derive

the parameters from DFT calculations one would gain much more flexibility and a simplified

parametrization scheme.

In a first step, one needs a basis set. In TB theory, basis functions are atomic orbi-

tals, and these can be calculated from the atomic KS equations:

[
−1

2
∇2 + veff [ρatom]

]
ηµ = εµηµ

For a basis, we are free to choose whatever we want. Atomic orbitals have the disadvantage,

that they are very diffuse, in solids, molecules or clusters the size of the orbitals is

’compressed’ due to the interaction with the neighbors. A measure for the distance between

neighbors is given by the so called ’covalent radius’ r0 and is determined for all atoms

empirically.

Therefore, it is wise to use orbitals, which incorporate this information somehow.

One way to enforce this, is to add an additional (harmonic) potential to the atomic

Kohn-Sham equations, which leads to compressed atomic orbitals, or optimized atomic

orbitals (O-LCAO).

[
−1

2
∇2 + veff [ρatom] +

(
r

r0

)2
]
ηµ = εµηµ (5)

As a result of the atomic calculations, we get the orbitals ηµ, the electron density at atom

α, ρα =
∑
|ηµ|2 and the overlap matrix Sµν =< ην |ηµ >. To solve the eigenvalue problem

eq. 2 or eq. 3, we only need the Hamiltonian matrix. This leads to further approximations,

since although we have the complete input density ρ0 =
∑
ρα the Hamiltonian evaluation

would be very complicated:

Hµν =< ην |Ĥ[ρ0]|ηµ >=< ην |Ĥ[
∑

ρα]|ηµ >

We therefore usually make the so called 2-center approximation for µ 6= ν:
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Hµν =< ην |Ĥ[ρ0]|ηµ >=< ην |Ĥ[ρα + ρβ]|ηµ > (6)

where orbital ν is located on atom α and orbital µ is located on atom β. The diagonal

Hamitonelements Hµµ = εµ are taken from eq. 5.

Hµν and Sµν are tabulated for various distances between atom pairs up to 10 , whe-

re they vanish (also due to compression!). For any molecular geometry, these matrix

elements are read in based on the distance between to atoms and then oriented in space

using the Slater-Koster sin/cos combination rules. Then the generalized eigenvalue problem

3 is solved and the first part of the energy can be calculated. It should be emphasized that

this is a non-orthogonal TB scheme, which is more transferable due to the appearance of

the overlap matrix.

The second part,

Erep[ρ0] =
1

2

∑
αβ

Uαβ

is calculated pointwise as follows: To get the repulsive potential e.g. for Carbon one could

take the Carbon dimer C2, stretch its bond and for each distance calculate the total energy

with DFT and the electronic TB part
∑

i εi. UCC(RC−C) is the given point-wise for every

RC−C by:

UCC(RC−C) = EDFT
tot (RC−C)−

∑
i

εi

In practice, we include several structures in the fit. For the C-C bond, e.g. we take molecules

with C-C single, double and triple bonds, as shown in Fig 1.

The resulting DFTB method works very well for homo-nuclear systems, where charge

transfer between the atoms in the system does not occur or is very small. As soon as charge

is flowing between atoms because of an electronegativity difference, the resulting density

is no more well approximated by the superposition of the atomic densities ρ0 =
∑
ρα.

However, the formalism works very well, when charge flow is small, therefore an extension

will try to start form the non-selfconsistent scheme.

The problem is, that the effective Kohn-Sham potentials contain only the neutral re-
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Abbildung 1: Erep, as derived from the three molecules shown

ference density ρ0, which does not account for charge transfer between atoms. Lets try

a Taylor series expansion (functional expansion) of the potential with the ground state

density ρ around the reference density ρ0:

veff [ρ] = veff [ρ0] +

∫
δveff [ρ]

δρ
δρdr

This is a very interesting procedure, since now the potential inserted into the KS equations

will lead to the same matrix elements of Hµν [ρ0] depending on the reference density as above,

and corrections terms, which have to deal with the functional derivative.

B. Self-Consistent Charge Density Functional Tight-Binding: SCC-DFTB

Since we need the total energy and not only the KS equations, it is better to start the

functional expansion with the DFT total energy. The SCC-DFTB method is derived from

density functional theory (DFT) by a second order expansion of the DFT total energy

functional with respect to the charge density fluctuations δρ around a given reference density

ρ0 (ρ′0 = ρ0(~r
′),
∫ ′

=
∫
d~r′ ):
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E =
occ∑
i

〈Ψi|Ĥ0|Ψi〉+
1

2

∫∫ ′( 1

|~r − ~r ′|
+
δ2Exc
δρ δρ′

∣∣∣∣
n0

)
∆ρ∆ρ′.

− 1

2

∫∫ ′ ρ′0ρ0

|~r − ~r ′|
+ Exc[ρ0]−

∫
Vxc[ρ0]n0 + Ecc (7)

After introducing the LCAO basis Ψi =
∑
ciµηµ, the first term becomes:

〈Ψi|Ĥ0|Ψi〉 =
∑

ciµc
i
νHµν

and can be evaluated as discussed above. The last four terms depend only on the reference

density ρ0 and represent the repulsive energy contribution Erep discussed above. Therefore,

we only have to deal with the second order terms.

The second order term in the charge density fluctuations ∆ρ (second term in Eq.7)

is approximated by writing ∆ρ as a superposition of atomic contributions

∆ρ =
∑
α

∆ρα,

which decay quickly with increasing distance from the corresponding center. To further

simplify E2nd, we apply a monopole approximation

∆ρα ≈ ∆qαF
α
00Y00, (8)

Basically, ∆ρα is assumed to look like an 1s orbital. Fα
00 denotes the normalized radial

dependence of the density fluctuation on atom α, which is constrained (approximated) to

be spherical (Y00);i.e., the angular deformation of the charge density change in second order

is neglected.

E2nd ≈ 1

2

∑
αβ

∆qα∆qβ

∫∫ ′( 1

|~r − ~r ′|
+
δ2Exc
δρ δρ′

∣∣∣∣
n0

)
Fα

00F
β
00Y

2
00drdr

′ (9)

This formular looks complicated, but has a quite simple curve shape:

• For large distances, Rαβ =|~r−~r ′| → ∞ the XC terms vanish, and the integral describes

the coulomb-interaction of two spherical normalized charge densities, which reduces

basically to 1/Rαβ, i.e. we get:

E2nd ≈ 1

2

∑
αβ

∆qα∆qβ
Rαβ
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• For vanishing interatomic distance, Rαβ =|~r − ~r ′| → 0, the integral describes the e-e

interaction on atom α. We can appoximate the integral as:

E2nd ≈ 0.5
∂2Eα
∂2qα

= Uα

Uα is known as the Hubbard parameter or the chemical hardness. It describes, how

much the energy of a system changes upon adding or removing electrons.

Now we need a formula to interpolate between these two cases. A very similar situation

appears in semi-empirical quantum chemical methods like MNDO, AM1 or PM3, where γ

has a simple form, as given, for example, by the Klopman-Ohno approximation,

γαβ =
1√

R2
αβ + 0.25(1/Uα + 1/Uβ)2

. (10)

Abbildung 2: The ’gamma’ function used to interpolate 1/R into the bonding region

To derive analytically an expression, we approximate the charge density fluctuations with

spherical charge densities. Slater like distributions

Fα
00 =

τα
8π
exp(−τα|r −Rα|) (11)

located at Rα allow for an analytical evaluation of the Hartree contribution of two spherical

charge distributions. This leads to a function of γαβ, which depends on the parameters τα
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and τβ, determining the extension of the charge densities of the atoms α and β as shown in

Fig 9. This function has a 1/Rαβ dependence for large Rαβ and approaches a finite value for

Rαβ → 0. For zero interatomic distances, i.e. α = β, one finds that:

τα =
16

5
γαα (12)

Eq. 12 implies, that the extension of the charge distribution is inversely proportional to the

chemical hardness of the respective atom; i.e. the size of an atom is inversely related to is

chemical hardness.

After integration, E2nd becomes a simple two-body expression depending on atomic-

like charges

E2nd =
1

2

∑
αβ

∆qα∆qβγαβ (13)

The diagonal terms γαα model the dependence of the total energy on charge density fluctua-

tions (decomposed into atomic contributions) in second order. The monopole approximation

restricts the change of the electron density considered and no spatial deformations are inclu-

ded; only the change of energy with respect to change of charge on the atom α is considered.

By neglecting the effect of the chemical environment on atom α, the diagonal part of γ can

be approximated by the chemical hardness η of the atom,

γαα = 2ηα = Uα =
∂2Eα
∂2qα

, (14)

Eα is the energy of the isolated atom α. Uα is known as the Hubbard parameter and is

twice the chemical hardness of atom α, which can be estimated from the difference of the

ionization potential and the electron affinity of atom α. For SCC-DFTB, it is calculated

using Janak’s theorem by taking the first derivative of the energy of the highest occupied

molecular orbital with respect to occupation number.
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1. Performance

Abbildung 3: CPU-timings
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Abbildung 4: DFTB Test
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Abbildung 5: DFTB Test

Abbildung 6: DFTB Test
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Abbildung 7: DFTB Test

Abbildung 8: DFTB Test
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Abbildung 9: DFTB Test


