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VIII Analysis of the simulation 3

VIII. ANALYSIS OF THE SIMULATION

A. Thermodynamic properties

As explained in detail earlier, we are able to obtain time averages of thermodynamic

quantites from MD simulation. As long as the simulation is ergodic, these correspond to the

ensemble averages, which are the values observed (in an experiment).

Some quantities may be evaluated directly, like the total (internal) energy:

U = 〈E〉t (VIII.1)

An interesting point is that the magnitude of fluctuations of certain quantities determines

other thermodynamic properties of interest. So, the isochoric heat capacity is given by the

variance of total energy:

CV =

(

∂U

∂T

)

V

=
σ2
E

kBT 2
=

〈E2〉 − 〈E〉2
kBT 2

(VIII.2)

Using this expression, we can obtain the heat capacity of the system in a very elegant way

from a single NVT simulation at a given temperature.

B. Structural data

1. Single molecule immersed in solvent

In the area of biomolecular simulation, we usually deal with a single solute molecule

(protein, DNA) immersed in solvent. The solute molecule is then the central object while our

interest in the solvent is merely secondary. In such a case, we obviously wish to characterize

the structure of the solute.

A common way to do so is to calculate the average structure of the molecule. The

coordinates of every atom ~ri are obtained as the arithmetic mean from the snapshots n

saved along the MD trajectory:

~ri =
1

N

N
∑

n=0

~r
(n)
i (VIII.3)

This is a very clear and simple concept, which often yields a reasonable result. However, it

may be problematic in some situations.
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VIII Analysis of the simulation 4

Imagine there are freely rotatable single bonds in the molecule, e.g. methyl groups in

thymine (DNA) or in alifatic side chains (proteins). Then, be averaging of the coordinates,

all three hydrogens of the methyl groups collapse to a single point, due to the free rotation

of the group. This is just a minor issue; (not only) for this reason, the hydrogen atoms are

usually excluded from the structure analysis, which is the restricted to the heavy atoms (C,

N, O etc.).

A more serious issue would come up if the entire molecule rotated in the box from the

initial orientation to another, in the course of the simulation. Then, the average structure of

the molecule would be complete nonsense. To remedy this, the calculation of average struc-

ture usually involves the fitting of every snapshot to a reference structure1 – the molecule

(regarded as a rigid body) is translated and rotated so that its RMS deviation from the

reference structure is minimized. Not until then are the coordinates taken to the sum in

Eq. VIII.3.

The most unfavorable situation comes up if the molecule does not oscillate around a

single structure. This may happen if the free energy surface (FES) features several available

minima, which correspond to different structures. Then, the molecule will assume all these

structures for certain periods of time, and the averaging of coordinates will most likely lead

to an absurd structure, not corresponding to any of the minima on the FES. In such a

case, it may be desirable to perform the averaging of structure on separate intervals of the

trajectory, where the individual minima are being sampled.

The average structure of the molecule provides valuable information, however of an in-

herently static character. The development of the structure in time may be followed very

simply by evaluating the root mean square deviation (RMSD)

RMSD2 =
1

N

N
∑

i=1

∣

∣~ri(t)− ~r ref
i

∣

∣

2
(VIII.4)

of the structure in time t with respect to a reference structure; this may be the starting

structure, the average structure or any other meaningful geometry of interest.2

Another similar quantity is the root mean square fluctuation (RMSF) of atomic positions,

1 The starting structure may be taken as the reference.
2 For instance, we may wish to compare the structure of a peptide to the idealized geometries of α-helix

and β-sheet, or that of DNA to the idealized A-DNA and B-DNA.
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or in other words the square of mean variance of atomic positions

RMSF2
i =

〈

|~ri − 〈~ri〉|2
〉

(VIII.5)

for the atom i. This value tells us how vigorously the position of every individual atom fluc-

tuates. RMSF may be converted to the so-called B-factor, which is an observable quantity

in diffraction experiments (X-ray etc.):

Bi =
8

3
π2 · RMSF2

i (VIII.6)

Typically, the structure files deposited in the PDB contain these B-factors for all atoms.

However, the comparison of B-factors obtained from a simulation with those from diffrac-

tion experiments may not be quite straightforward, as the simulation parameters and the

experimental conditions may differ largely.

It is worth mentioning several further means of structure analysis which are used above

all in the studies of proteins. It is possible to measure simply the distances of the individual

amino-acid residues, represented for instance by their centers of mass or by the Cα atoms.

This way, a distance matrix is constructed, which may be either time-dependent or averaged

over the simulation. Distance matrices found their use in bioinformatics, and various tool

have been developed for their analysis.

A classical means of analysis of protein structure is the Ramachandran plot – a two-

dimensional histogram of dihedral angles φ and ψ along the protein backbone. Simulation

programs usually contain tools to generate Ramachandran plots automatically.

2. Fluids

If we wish to describe the structure of a fluid (liquid or gas), for example pure argon or

water, we will have to make use of another concept. Rather than one prominent molecule,

we have many molecules in the system which are all equally important.

A useful way to describe the structure of such a system are the radial distribution func-

tions. These describe how the molecular (or atomic) density varies as a function of the

distance from one particular molecule (or atom). Consider a spherical shell of thickness δr

at a distance r from a chosen atom; the volume of the shell is given by

δV ≈ 4πr2 · δr (VIII.7)
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We count the number of molecules (atoms) present in this shell n, and divide this by δV to

obtain a kind of ‘local density’ at the distance r. The pair distribution function g(r) is then

obtained by dividing by the ideal-gas distribution (which is the macroscopic density):

g(r) =
n/δV

ρ
(VIII.8)

g(r) is a dimensionless number which determines how likely it is to find a molecule (atom)

in the distance of r from the reference particle, compared to the homogeneous distribution

in the ideal gas.

FIG. 1: Radial distribution function for a Lennard-Jones fluid near the triple point (left) and for

a hard-sphere fluid (right). Reprinted from Nezbeda, Kolafa and Kotrla 1998.

A typical example of g(r) for liquid water as well as hard spheres is shown in Fig. 1. The

function vanishes on short distances, as the molecules cannot intersect. A high peak follows

on roughly the van der Walls radius, where the interaction of molecules is favorable.3 In

other words, it is much more likely to find two molecules on this distance in a real liquid

than in the ideal gas. On longer distances, several shallow minima and maxima are found,

and g(r) converges to unity at large distances – there, the probability of finding a particle

is uniform, the same as in the ideal gas.

The importance of radial distribution functions consists not only in the information about

the structure. If the pairwise additivity of forces is assumed, then thermodynamic properties

can be calculated using g(r) and the potential energy u(r) and force f(r) of a pair of particles.

3 However, such a peak would be present in the case of hard spheres (which do not feature any attractive

interaction) as well.
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For example, the corrections to the ideal-gas values of total energy and pressure follow as

E − 3

2
NkBT = 2πNρ

∫ ∞

0

r2 u(r) g(r) dr (VIII.9)

P − ρ kBT = −2π

3
ρ2
∫ ∞

0

r3f(r) g(r) dr (VIII.10)

The Fourier transform of the pair distribution function is the structure factor, which may

be measured in diffraction experiments (X-ray of neutron diffraction).

C. Monitoring the equilibration

Every simulation aimed at producing structural and/or thermodynamic data has to be

performed in the termodynamic equilibrium. Therefore, the production simulation shall

always by preceded by an equilibration run, in order to provide the system a possibility

to achieve the equilibrium. The equilibration should proceed until the values of certain

monitored properties become stable, i.e. until these does not exhibit a drift any more.

It is convenient to monitor the thermodynamic properties that are being evaluated and

written out by the simulation program. These are usually the potential energy and the

temperature; in case of NPT simulations, the pressure or the density should also be taken

into account.

Apart from the thermodynamics, the structure of the system must be taken care of. Many

simulations of the liquid state are being started from a configuration that exhibits some

artifical regularity, like that of the crystal lattice.4 This makes also the thermodynamics

wrong, because the artifical regularity causes the entropy to be too small. Anyway, the

equilibration must continue until such structural regularities are washed out. To guarantee

this, we need appropriate quantities to characterize the regularity of the structure.

A measure of translational order/disorder was proposed by Verlet in the form of an order

parameter λ

λ =
λx + λy + λz

3
, λx =

1

N

N
∑

i=1

cos

[

4πxi
a

]

etc. (VIII.11)

where a is the length of the edge of the unit cell. In the ideal crystal, λ assumes the value of

one, while it drops to zero for a completely disordered structure. Thus, in an equilibration,

4 Note that we usually fill the simulation box with water in the form of small and identical ‘bricks’.
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one should see λ to decrease to zero and then fluctuate around zero.

Another useful quantity may be the mean squared displacement (MSD) given by

MSD =
1

N

N
∑

i=1

|~ri(t)− ~ri(0)|2 (VIII.12)

which should increase gradually with time in a fluid with no specific molecular structure,

whereas it would oscillate about a mean value for a solid.

FIG. 2: The course of equilibration of liquid argon being followed by the Verlet order parameter

(left) and the mean squared displacement (right). Reprinted from Leach: Molecular Modelling.

D. Time-dependent properties

1. Correlation functions

Suppose there are two physical quantities x and y, which may exhibit some correlation.

This term indicates a relation of the quantities, opposed to independence. To quantify corre-

lation, several kinds of correlation functions or correlation coefficients have been developed.

Most common are the Pearson correlation coefficients, which describe the potential linear

relationship between the quantities.

Typically, we consider two quantities fluctuating around their mean values 〈x〉 and 〈y〉.
Then, it is of advantage to consider only the fluctuating part and introduce a correlation

coefficient ρxy

ρxy =
〈(x− 〈x〉) · (y − 〈y〉)〉

√

〈(x− 〈x〉)2〉 · 〈(y − 〈y〉)2〉
=

cov(x, y)

σx · σy
(VIII.13)

where cov(x, y) stands for the covariance of x and y, which is the generalization of variance.
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FIG. 3: Correlation of two quantities (on the x and y axes) and the coresponding correlation

coefficients. Downloaded from wikipedia.

In an MD simulation, we obtain the values of various properties at specific times. It

can happen at some point in time, that the value of a property x is correlated with the

value of the same property at an earlier time point. This behavior may be described by the

autocorrelation function (ACF) of this property

cx(t) =
〈x(t) · x(0)〉
〈x(0) · x(0)〉 =

∫

x(t′) x(t′ + t) dt′
∫

x2(t′) dt′
(VIII.14)

which denotes the correlation of the same property x at two time points separated by t, and

the denominator 〈x(0) · x(0)〉 normalizes cx so that it takes values between −1 and 1.

2. Autocorrelation of velocity

The autocorrelation function indicates, to which extent the system retains a ‘memory’ of

its previous values, or conversely, how quickly it takes for the system to ‘forget’ its previous

state. A useful example is the velocity autocorrelation function, which tells us how closely

the velocities of atoms at a time point t resemble those at a time 0. It is a good idea to

average the ACF of velocity over all atoms i in the simulation:

cv(t) =
1

N

N
∑

i=1

〈~vi(t) · ~vi(0)〉
〈~vi(0) · ~vi(0)〉

(VIII.15)

Typical ACF starts at the value of one in t = 0 and decreases afterwards. The time needed

for the system to lose the autocorrelation of the quantity (velocity) whatsoever is often called

correlation time or relaxation time τv:

τv =

∫ ∞

0

cv(t) dt (VIII.16)

There is a statistical issue related to the evaluation of properties of interest. In order

to obtain correct average values of properties related to velocity (i.e. dynamical properties),
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it is necessary to calculate the average of uncorrelated values. And now, the longer the

relaxation time is, the fewer values can we take from the simulation of a certain length, to

obtain correct averages. On the other hand, if the quantity (velocity) has short relaxation

time, then it is possible to take many values for averaging.

FIG. 4: Velocity autocorrelation functions for liquid argon (densities in g·cm−3). Reprinted from

Leach: Molecular Modelling.

Fig. 4 shows the velocity ACF from the simulations of a liquid at two different densities.

At lower density, the ACF decreases gradually to zero. Unlike that, at higher density, the

ACF comes faster to zero and even assumes negative values for a period of time. This means

that the velocities point in the direction opposite to that at t = 0, which can be interpreted

by the concept of a ‘cage’ structure of the liquid. The initial decay of ACF is slower

than predicted by the kinetic theory, and this result together with its (slightly complex)

explanation represents one of the most interesting achievements of early simulations.

There is a quite straightforward connection between the velocity ACF and the transport

properties of the system. One of the Green–Kubo relations expresses the self-diffusion

coefficient D by using the integral of the velocity ACF:5

D =
1

3

∫ ∞

0

〈~vi(t) · ~vi(0)〉i dt (VIII.17)

Diffusion coefficients are very interesting observable quantities, and it is an important point

that we are able to obtain them from MD simulations. Interestingly, D may be obtained

from another property easily accesible in the simulation – the mean squared displacement

5 Recall Fick’s laws of diffusion for flux J and concentration φ: J = −D ∂φ
∂x

, ∂φ
∂t

= D ∂2φ
∂x2
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(see Eq. VIII.12). The respective Einstein relation reads

D =
1

6
lim
t→∞

〈

|~ri(t)− ~ri(0)|2
〉

i

t
(VIII.18)

3. Autocorrelation of dipole moment

Velocity is an example of a property of a single atom. Contrary to that, there are

quantities that need to be evaluated for the entire molecular system. Such a property of the

system is the total dipole moment, which is the sum of the dipole moments of all individual

molecules i in the system:

~µtot(t) =
N
∑

i=1

~µi(t) (VIII.19)

The ACF of total dipole moment is given as

cµ(t) =
〈~µtot(t) · ~µtot(0)〉
〈~µtot(0) · ~µtot(0)〉

(VIII.20)

This quantity is very significant because it is related to the vibrational spectrum of the

sample. Indeed, it is possible to obtain the infrared spectrum as the Fourier transform of

the dipolar ACF. An example is presented in Fig. 5. Rather than sharp peaks at well-defined

frequencies (as is the case of molecules in the gas phase), we see continuous bands, as the

liquid absorbs at many frequencies in a broad interval. The frequencies correspond to the

rate at which the total dipole moment is changing.

FIG. 5: Infrared spectra for liquid water. Black dots – experiment; thick curve – result from

classical MD; thin curve – result with quantum corrections. B. Guillot, J. Phys. Chem. 1991.
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4. Principal component analysis

It is possible to perform covariance analysis on the atomic coordinates in MD snapshots.

This principal component analysis (PCA), also called essential dynamics uses the symmetric

3N -dimensional covariance matrix C of the atomic coordinates ri ∈ {xi, yi, zi}:

Cij = 〈(ri − 〈ri〉) · (rj − 〈rj〉)〉t or (VIII.21)

Cij =
〈√

mi(ri − 〈ri〉) ·
√
mj(rj − 〈rj〉)

〉

t
(VIII.22)

The latter definition is mass-weighted, with mi being the masses of the respective atoms.

Standard diagonalization techniques can be used to obtain the eigenvalues and eigenvec-

tors of this matrix. The eigenvectors the correspond to the principal or essential modes of

motion of the system, an analogy of the normal modes; the respective eigenvalues may be

expressed in terms of quasi-harmonic frequencies of these modes.

The first few eigenvectors with the largest eigenvalues (and thus the lowest frequencies of

as little as 1 cm−1) usually correspond to global, collective motions in which many atoms are

involved. In the example of double-stranded DNA, the three weakest modes (see Fig. 6) are

the same as would be expected for a simple rod made of a flexible material – two bending

modes around axes perpendicular to the principal axis of the DNA, and a twisting mode.

FIG. 6: First three principal modes of motion of double-stranded DNA (left) and their frequencies

for two different sequences (right). Reprinted from S. A. Harris, J. Phys. Condens. Matter 2007.

Not only does this analysis give us an idea of what the modes of motion look like, it can

also be used in thermodynamic calculations. The obtained vibrational frequencies may be

used to evaluate configurational entropy of the molecule, which is otherwise hardly accessible.
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E. Appendix – Fourier transform

The Fourier transform (FT) is an operation that transforms one function of a real variable

into another. In such applications as signal processing, the domain of the original function

is typically time and is accordingly called the time domain. That of the new function is

frequency, and so the FT is often called the ‘frequency domain representation of the original

function.’ It describes which frequencies are present in the original function. In effect, the

Fourier transform decomposes a function into oscillatory functions.6

FT of a function f(x) in the domain of frequency ω is given by the expression

F (ω) =

∫ ∞

−∞

f(x) · exp [−iωx] dx (VIII.23)

where the connection to oscillatory functions is evident by noting that

exp [−iωx] = cos [ωx]− i sin [ωx] (VIII.24)

FIG. 7: Example of the Fourier transform (right) of a signal periodic on a time interval (left).

F. Exercises

• What does the radial distribution function of the ideal gas look like?

• What does the radial distribution function of an ideal crystal look like?

6 The term Fourier transform refers both to the frequency domain representation of a function and to the

process or formula that “transforms” one function into the other.
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IX. FREE ENERGY SIMULATIONS

When searching for a physical quantity that is of most interest in chemistry, we could

hardly find anything more appropriate than free energies – Helmholtz F or Gibbs G. Truly,

these represent the holy grail of computational chemistry, both for their importance and

because they are difficult to calculate.

These difficulties were hinted at in one of previous chapters. Recall that we can write

F = kBT ln

∫∫

exp[βE(~r, ~p)] · ρ(~r, ~p) d~r d~p+ c (IX.1)

The problem is that the large energy values (far from the minimum of energy) enter an

exponential term, so that these high-energy regions may contribute significantly to the free

energy F . So, in a simulation, if we have too few points in these high-energy regions of the

phase space (undersampling), we may introduce sizeable errors in the calculated averages.

There are two fundamental approaches to overcome this difficulty: free energy pertur-

bation and thermodynamic integration. Also, several computational tricks may be used for

particular types of reactions, like alchemical simulations or umbrella sampling. An impor-

tant observation is that it is not necessary to find the absolute value of the free energy. When

considering a chemical reaction,7 it is important to know merely the free energy difference

(∆F , ∆G) between the involved states (reactant A and product B).

A. Free energy perturbation (FEP)

For these states with energies EA(~r, ~p) and EB(~r, ~p), and partition functions QA and QB,

free energy difference may be derived as

∆F = FB − FA = −kBT ln
QB

QA

= −kBT ln

∫∫

exp[−βEB] d~r d~p
∫∫

exp[−βEA] d~r d~p

= −kBT ln

∫∫

exp[−βEB] exp[βEA] exp[−βEA] d~r d~p
∫∫

exp[−βEA] d~r d~p

= −kBT ln

∫∫

exp[−βEB] exp[βEA] · ρA(~r, ~p) d~r d~p

= −kBT ln

∫∫

exp[−β(EB − EA)] · ρA(~r, ~p) d~r d~p (IX.2)

7 in a very general sense of a reaction that need not involve chemical bonds being created or broken – ligand

binding a protein, passage of a molecule through membrane, or protein folding are reactions as well
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IX Free energy simulations 15

The integral has the form of an average of a property S taken with the phase space

density of state A

〈S〉A =

∫∫

S(~r, ~p) · ρA(~r, ~p) d~r d~p (IX.3)

and so we can write equivalently

∆F (A→ B) = −kBT ln 〈exp[−β(EB − EA)]〉A
∆F (B → A) = −kBT ln 〈exp[−β(EA − EB)]〉B (IX.4)

which is the free energy formula by Zwanzig (1954) and the essence of the FEP method.

Thus, in principle, it is possible to perform a simulation of state A and obtain the free energy

by averaging the exponential of the difference of energies of states B and A, or vice versa.

Practically, we start an MD in state A to get the phase space density ρA, and then calculate

the difference between the energies of states B and A along the trajectory.

• Free energy of deprotonation of an amino acid side chain in a protein. We would run the

dynamics for the protonated species, and then evaluate the energy difference between

protonated and unprotonated species to get the average of exp[−β(EB − EA)]. This

would only work if the conformations of the protein, and above all the configuration of

water molecules, sampled along the MD were very similar with both forms. Usually,

this is not the case.

• The ionization of a molecule. Again, we would perform a simulation of the neutral

species and evaluate the energy differences. Alas, the configuration of water would be

quite different here, too, leading to a very small overlap of phase space densities.

FIG. 8: Deprotonation of an amino acid (left) and ionization of a molecule (right), both in water.

Once again, let us emphasize the advantage of FEP over the direct evaluation of free

energies. In the latter case, two simulations would be performed, one for each state A and

15



IX Free energy simulations 16

B, and the free energy difference would follow (using Eq. IX.1) as

∆F (A→ B) = kBT ln 〈exp[βEB]〉B − kBT ln 〈exp[βEA]〉A (IX.5)

Here, note that the free energy difference is very small, of a few kcal/mol, while the total

energies are very large, of hundreds or thousands kcal/mol, if the solvent or the like is

included. So, we have to subtract two large numbers in order to get a small one. However,

a small relative uncertainty (error) of the large values would be huge in comparison with

the possibly small resulting free energy difference. Therefore, it is necessary to obtain these

large values extremely accurate, which would mean the necessity to perform exceedingly

long MD simulations – so long that we will never be able to afford it!

That is why we avoid performing individual simulations for the end states and rather

evaluate the free energy difference directly in one simulation. Then, it is no longer necessary

to sample the regions of the molecular system which do not change and are not in contact

with the regions that are changing, as these do not contribute to the energy difference

EB − EA. The region of phase space that has to be sampled thoroughly is much smaller,

and the necessary simulation length may become feasible.

For the following, the concept of overlap in phase space or overlap of phase space densities

is crucial. In a straightforward way, the more similar the states A and B are, the more similar

are also the corresponding phase space densities, and they may exhibit an overlap, see Fig. 9.

If the phase space densities for states A and B are similar (overlapping, Fig. 9 right), then

FIG. 9: Large (right) and no (left) overlap of phase space densities corresponding to two states.

the low-energy regions of state B may be sampled well even in the simulation of state A,

and the free energy difference ∆F (A→ B) in Eq. IX.4 may converge. If this is not the case

(like in Fig. 9 left), then the simulation of state A hardly comes to the region of phase space

16



IX Free energy simulations 17

where the state B has low energy; this region is undersampled, the averaging of the energy

EB is wrong, and the calculation will not converge. As a rule of thumb, this is the case if

|EB − EA| > kBT (IX.6)

A way to overcome this problem is to insert an intermediate state (designated ‘1’) which

overlaps with both A and B, as in Fig. 10. The underlying idea is to make use of the fact

FIG. 10: Intermediate state ‘1’ overlapping with state A and B

that free energy is a state function, and so

∆F (A→ B) = ∆F (A→ 1) + ∆F (1 → B) (IX.7)

Therefore, we can perform two MD simulations, one for each of the states A and 1, and

evaluate free energies for the two subprocesses. These may be expected to converge better,

and their sum gives the free energy of A→ B:

∆F = −kBT ln

[

Q1

QA

· QB

Q1

]

=

= −kBT ln 〈exp[−β(E1 − EA)]〉A − kBT ln 〈exp[−β(EB − E1)]〉1 (IX.8)

Obviously, it is possible to insert more than one intermediate state between A and B, if

these differ exceedingly. For N intermediate states 1, 2, . . . , N , we obtain

∆F = − kBT ln

[

Q1

QA

· Q2

Q1

· . . . · QB

QN

]

=

= − kBT ln 〈exp[−β(E1 − EA)]〉A − kBT ln 〈exp[−β(E2 − E1)]〉1 −

− . . .− kBT ln 〈exp[−β(EB − EN)]〉N (IX.9)

and we have to perform N + 1 simulations, e.g. of states A, 1, 2, . . . , N .

17



IX Free energy simulations 18

The description of this procedure may sound complicated, but it is implemented in the

common simulation packages in a convenient way. Since we can change the chemical iden-

tities of the atoms or functional groups, this practice is often called computational alchemy.

Typically, one introduces a parameter λ which ‘converts’ the force-field parameters (i.e. the

Hamiltonian) from these of state A to those of state B:

Eλ = (1− λ) · EA + λ · EB (IX.10)

• The (solvation) free energy difference of argon and xenon in aqueous solution. The

two atoms differ only in the vdW parameters – the well depth ε and the radius σ. To

transmutate the energy function from that of one species to the other, we interpolate:

ελ = (1− λ) · εA + λ · εB (IX.11)

σλ = (1− λ) · σA + λ · σB (IX.12)

In the simulation, we start from λ = 0, i.e. an argon atom, and change it in subsequent

steps to 1. For each step (called window), we perform an MD with the corresponding

values of the vdW parameters, and calculate the relative free energies.

• A true chemical reaction like HCN → CNH. The situation is more complicated as we

need the topologies of both molecules. Thus, a dual-topology simulation is performed:

we have both molecules simultaneously in the simulation. These two molecules do not

interact with each other, and we gradually switch off the interaction of one species

with the solvent during the simulation while we switch on the other at the same time.

FIG. 11: Examples of ‘alchemical’ simulations.
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B. Thermodynamic integration (TI)

In the last chapter, we have written the energy E as a function of the parameter λ. This

means, that the free energy also becomes dependent on λ:

F = F (λ) (IX.13)

with F (0) = F (A) and F (1) = F (B). Thus, we can write

∆F = F (B)− F (A) =

∫ 1

0

∂F (λ)

∂λ
dλ (IX.14)

with

F (λ) = −kBT lnQ(λ) (IX.15)

The derivative of F rearranges to

∂F

∂λ
(λ) = −kBT

∂ lnQ

∂λ
(λ) = −kBT

1

Q(λ)
· ∂Q
∂λ

(λ) = −kBT
1

Q(λ)
· ∂
∂λ

∫∫

exp[−βEλ] d~r d~p =

= −kBT
1

Q(λ)
·
∫∫

(−β)∂Eλ

∂λ
exp[−βEλ] d~r d~p =

= −kBT · (−β) ·
∫∫

∂Eλ

∂λ

exp[−βEλ]

Q(λ)
d~r d~p

= 1 ·
∫∫

∂Eλ

∂λ
ρλ(~r, ~p) d~r d~p =

〈

∂Eλ

∂λ

〉

λ

(IX.16)

This is the essence of TI – the derivative of free energy F with respect to the coupling

parameter λ is calculated as the average of derivative of total MM energy E, which can be

directly evaluated in the simulation. Then, the free energy difference follows simply as

∆F =

∫ 1

0

〈

∂Eλ

∂λ

〉

λ

dλ (IX.17)

Practically, we perform a MD simulation for each chosen value of λ; it is usual to take

equidistant values in the interval (0,1) like 0, 0.05,. . . , 0.95 and 1. Each of these simulations

produces a value of
〈

∂E
∂λ

〉

λ
, so that we obtain the derivative of free energy in discrete points

for λ ∈ (0, 1). This function is then integrated numerically, and the result is the desired free

energy difference ∆F .

An example of the TI simulation is shown in Fig. 12. An atom of rare gas (neon) is

dissolved in water; in course of the NPT simulation, the van der Walls parameters of the
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neon atom are being gradually switched off by means of the λ parameter, so that the atom

is effectively disappearing. The derivative of total energy with respect to λ is evaluated for

several (21) values of λ ranging from 0 to 1. Eq. IX.17 is then used to obtain the (Gibbs)

free energy difference of the two states: (i) a neon atom in water, and (ii) no neon atom

in water, i.e. outside of the solution in vacuo. Thus, the calculated free energy difference

corresponds directly to the solvation free energy, a quantity which is of considerable value

in chemistry.

FIG. 12: TI simulation of a neon atom in water being disappeared. See text for explanation.

Finally, let us summarize the features of FEP and TI. Irrespective of the nature of the

studied reaction, both FEP and TI require the introduction of a coupling parameter λ, which

plays the role of the reaction coordinate with λ = 0 corresponding to the reactant and λ = 1

to the product. The fact that free energy is a state function guarantees the independence

of the result on the chosen path between the reactant and the product, and so it does

not matter if the reaction coordinate corresponds to an unphysical process like a change of

chemical identity of one or more atoms (as is the case in the alchemical simulations).

The remaining open question regards the necessary number of windows in the simulation.

We would like to have as few windows as possible, without compromising numerical precision

of the calculation. In FEP, the assumption is that while simulating the state A, the low-

energy regions of state B are sampled well. The closer the windows are, the better is this

condition fulfilled. On the other hand, the free energy derivative is always evaluated for one

λ-value with TI, and the problem present in FEP does not occur here. It is the numerical

integration of the free energy derivative that brings on the numerical inaccuracy of TI.
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C. Free energy from non-equilibrium simulations

A major disadvantage of the described methodology – TI using equilibrium simulations

for discrete values of λ – is the very slow convergence of ∂G/∂λ once the alchemical change

becomes large. So, it is often possible to describe the mutation of a single amino acid side

chain in a protein provided the structure of the protein remains the same, but this should

be considered a practical limit of the method.

To avoid this problem, the current development of free-energy methods makes use of non-

equilibrium simulations. Here, the usual process of “equilibration” of the system for every

of the selected values of λ followed by a “production phase” is not used; a non-equilibrium

simulation consists of n MD steps, where the parameter λ starts at 0 and increases by 1/n

in every MD step. This way, the simulation does not describe the system in equilibrium

in any moment, as the external parameter λ is changing all the time. Whereas a single

simulation of this kind is probably worthless, the remarkable equality by Jarzynski provides

a link between an ensemble of such simulations and the desired free energy:

exp[−β∆F ] = 〈exp[−βW ]〉 (IX.18)

The true value of free energy ∆F is obtained as a special kind of ensemble average, for

the ensemble of non-equilibrium TI simulations yielding “free energies” W . These values

W =
∫ 1

0
∂E/∂λ dλ are no free energies whatsoever; instead, they may be called (irreversible)

work. Since no convergence of any quantity is required within a single non-equilibrium

simulation, these simulations may be very short – and this is the actual practice. However,

the sampling problem persists because the largest statistical weight is carried by rarely

occuring simulations (due to the unfavorable averaging in Eq. IX.18).

This sampling issue may be circumvented by exponential work averaging with gaussian

approximation. An ensemble of simulations is performed for the ‘forward’ process 0 → 1

as well as for the ‘reverse’ process 1 → 0, and the obtained distributions of forward and

backward irreversible work are approximated by gaussians with mean and standard deviation

Wf , σf and Wr, σr, respectively. The free energy is calculated as an average of values

∆Ff = Wf −
1

2
βσ2

f

∆Fr = −Wr +
1

2
βσ2

r (IX.19)
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A more general expression (than the Jarzynski equality) is the Crooks fluctuation theorem

(CFS), according to which the distributions of forward and reverse work are related like

Pf (W )

Pr(−W )
= exp[β(W −∆F )] (IX.20)

Then, once we have obtained well-converged distributions Pf and Pr, it is possible to apply

Bennett’s acceptance ratio for an equal number of forward and reverse simulation; the free

energy follows from

〈

1

1 + exp[β(W −∆F )]

〉

f

=

〈

1

1 + exp[−β(W −∆F )]

〉

r

(IX.21)

It is possible to apply CFS more directly. A closer look at Eq. IX.20 reveals that the free

energy corresponds to the value of work W for which the probabilities Pf and Pr are equal

– to the intersection point of the distributions. To determine this point readily from the

distributions may be difficult and a source of large errors if the overlap of the distributions

is very small. Again, this issue can be solved by the assumption of normal distribution

of the forward and reverse work, which was proven for a system with a large number of

degrees of freedom. The procedure thus requires to perform a number of forward and reverse

simulations sufficient to perform a good-quality gaussian fit to the resulting distributions of

irreversible work. The free energy is calculated directly as the intersection points of these

gaussian curves.

FIG. 13: The Crooks gaussian intersection (from Goette and Grubmüller 2009).
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D. Thermodynamic cycles

Quite often, we are interested not in the absolute free energies and not even in the reaction

free energies, but rather in the difference (∆) of reaction free energies (∆F ) corresponding

to two similar reactions. These may the be denoted as ∆∆F or ∆∆G.

Consider as an example the binding of an inhibitor molecule I to an enzyme E, as shown

in Fig. 14 left. Usually, we are interested in differences of binding free energies, for instance

of an inhibitor I to two very similar enzymes E and E′:

E + I ⇋ EI ∆G1

E′ + I ⇋ E′I ∆G2 (IX.22)

The binding of the inhibitor can induce large structural changes in the enzyme, and it

would be very difficult (if not impossible) to describe this reaction in a simulation both

correctly and efficiently at the same time. So, significant errors would seem to be inevitable.

A way to solve this would be to simulate not the reaction of binding but rather the alchemical

transmutation of enzyme E to E′. As we consider the enzymes to be very similar,8 it is

plausible to assume the structure of complexes EI and E′I to be similar as well. Then, the

alchemical simulation may well be successful. As free energy is a state function, the sum of

FIG. 14: Examples of the thermodynamic cycle.

free energies around a thermodynamic cycle vanishes (e.g. clockwise in Fig. 14 left):

∆F1 +∆F3 −∆F2 −∆F4 = 0 (IX.23)

8 Imagine E′ to be derived from E by a mutation of a single amino acid, e.g. leucine to valine.
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The difference of binding free energies then follows to be equal the difference of free energies

calculated in alchemical simulations:

∆∆F = ∆F1 −∆F2 = ∆F3 −∆F4 (IX.24)

Similarly, it is possible to calculate the free energy difference of binding of two similar

ligands to the same enzyme (Fig. 14 right), or the difference of solvation energy of two

similar molecules. In the latter case, two alchemical simulations would be performed: one

in vacuo and the other in solvent.

E. Potentials of mean force (PMF) and umbrella sampling

Sometimes, we wish to know not only the free energy difference of two states (the reactant

and the product), but rather the free energy along the reaction coordinate q within a certain

interval; the free energy is then a function of q while it is integrated over all other degrees of

freedom. Such a free energy function F (q) is called the potential of mean force. Examples

of such a reaction coordinate q may be the distance between two particles if the dissociation

of a complex is studied, the position of a proton for a reaction of proton transfer, or the

dihedral angle when dealing with some conformational changes.

To separate the degree of freedom spanned by the reaction coordinate, we perform a

coordinate transformation from ~r = (r1, r2, . . . , r3N) to a set (u1, u2, . . . , u3N−1, q), where

the (3N − 1)-dimensional vector ~u represents all remaining degrees of freedom, and we can

write

d~r = d~u · dq (IX.25)

Looking for the free energy at a certain value of q, all remaining degrees of freedom are

averaged over (or ‘integrated out’). One could think of performing an MD simulation and

sampling all degrees of freedom except for q.

An example would be the free energy of formation of an ion pair in solution, as shown in

Fig. 15. An MD simulation would be performed to calculate the free energy for every value

of the reaction coordinate q.

The free energy is given by:

F = −kBT ln

∫∫

exp[−βE(~r, ~p)] d~r d~p (IX.26)
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FIG. 15: Na+ and Cl− in water solution. The distance between the ions is the reaction coordinate

q, and all other degrees of freedom (water) are represented by ~u and are free to vary.

If we wish to evaluate an expression for a coordinate q taking a certain value q0, it is

convenient to use the Dirac delta function,9 δ(q − q0). With that, we can write the free

energy for the fixed reaction coordinate q0 as

F (q0) = −kBT ln

∫∫

δ(q − q0) exp[−βE(~r, ~p)] d~p d~u dq

= −kBT ln

[

Q ·
∫∫

δ(q − q0)
exp[−βE(~r, ~p)]

Q
d~p d~u dq

]

= −kBT ln

[

Q ·
∫∫

δ(q − q0) · ρ(~r, ~p) d~p d~u dq
]

= −kBT ln [Q · 〈δ(q − q0)〉]

= −kBT lnQ− kBT ln 〈δ(q − q0)〉 (IX.27)

How to interpret this? ρ(~r, ~p) is the probability, that the system is at the point (~r, ~p). Then,

P (q0) =

∫∫

δ(q − q0) · ρ(~r, ~p) d~r d~p = 〈δ(q − q0)〉 (IX.28)

is the probability that the reaction coordinate q in the system takes the value of q0 , because

the integral proceeds over the whole phase space and the delta function ‘cancels out’ all

points, where the reaction coordinate is not equal q0! So, the integration collects all points

in phase space, where the reaction coordinate has this specific value.

9 This is a generalized function representing an infinitely sharp peak bounding unit area; δ(x) has the value

of zero everywhere, except at x = 0 where its value is infinitely large in such a way that its integral is 1.
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What would it work like in the example of the ion pair? We perform an MD simulation

for the system, and then count how many times the reaction coordinate takes the specified

value, in other words we calculate the probability P (q0) of finding the system at q0.

Then, the free energy difference of two states A and B is:

FB − FA = −kBT lnQ− kBT ln 〈δ(q − qB)〉 − (−kBT lnQ+ kBT ln 〈δ(q − qA)〉)

= −kBT ln
〈δ(q − qB)〉
〈δ(q − qA)〉

= −kBT ln
P (qB)

P (qA)
(IX.29)

which is actually the known definition of the equilibrium constant P (B)/P (A).

So, the task is clear: perform a MD, specify a coordinate, and then just count, how often

the system is at special values of the reaction coordinate. The ratio of these numbers gives

the free energy difference!

FIG. 16: Energy profile and probability distribution along the reaction coordinate. Note the

undersampled region of the barrier.

This is very good, in principle. But, we also know the problem: If we there is a high

barrier to be crossed along the reaction coordinate to come from A to B, a pure (unbiased)

MD simulation will hardly make it,10 and even if it does, the high-energy region (barrier)

will be sampled quite poorly.

Then, a straightforward idea is to apply an additional potential, also called biasing po-

tential in order to make the system spend a larger amount of time in that (those) region(s)

10 In other words, the ergodicity of the simulation is hindered.
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of phase space that would otherwise remain undersampled. This is the underlying principle

of the umbrella sampling.11 The additional potential shall depend only on the reaction co-

ordinate: V = V (q).12 Then, what will the free energy look like in such a biased case? Let

us start with the previously obtained expression:

F (q0) = −kBT ln

[
∫∫

δ(q − q0) exp[−βE] d~r d~p
∫∫

exp[−βE] d~r d~p

]

= −kBT ln

[
∫∫

δ(q − q0) exp[βV ] exp[−β(E + V )] d~r d~p
∫∫

exp[−β(E + V )] d~r d~p
·
∫∫

exp[−β(E + V )] d~r d~p
∫∫

exp[−βE] d~r d~p

]

= −kBT ln

[

〈δ(q − q0) exp[βV ]〉E+V

∫∫

exp[−β(E + V )] d~r d~p
∫∫

exp[βV ] exp[−β(E + V )] d~r d~p

]

= −kBT ln

[

〈δ(q − q0) exp[βV ]〉E+V

1

〈exp[βV ]〉E+V

]

= −kBT ln

[

exp[βV (q0)] 〈δ(q − q0)〉E+V

1

〈exp[βV ]〉E+V

]

= −kBT ln 〈δ(q − q0)〉E+V − V (q0) + kBT ln 〈exp[βV 〉E+V

= −kBT lnP ∗(q0)− V (q0) + kBT ln 〈exp[βV ]〉E+V (IX.30)

giving the free energy as function of reaction coordinate, or PMF in the form

F (q) = −kBT lnP ∗(q)− V (q) +K (IX.31)

This result is very interesting: We have added an arbitrary potential V (q) to our system.

Now, we have to calculate the ensemble averages with the biased potential E+V as indicated

by 〈〉E+V . We obtain the biased probability P ∗(q) of finding the system at the value of the

reaction coordinate for the ensemble E+V , which can obviously be very different from that

of the unbiased ensemble P (q). Yet, we still get the right (unbiased) free energy F (q), once

we take the biased probability P ∗(q), subtract the biasing potential V (q) at the value of the

reaction coordinate and add the term K.

We can use this scheme efficiently, by way of moving the biasing (harmonic) potential

along the reaction coordinate as shown in Fig. 17. In this case, we perform k simulations

with the potentials Vk and get:

F (q) = −kBT lnP ∗(q)− Vk(q) +Kk (IX.32)

11 This should evoke the image of an interval of the reaction coordinate being covered by an umbrella.
12 In such a case, 〈δ(q − q0) · exp[βV ]〉 = 〈δ(q − q0) · exp[βV (q0)]〉 = exp[βV (q0)]·〈δ(q − q0)〉 in the following.
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FIG. 17: Harmonic biasing potentials keep the system in the desired regions of reaction coordinate.

For each of these k simulations, we extract the probability P ∗(q) for every value of q and

easily calculate V k(q). The curves of −kBT lnP ∗(q)− V k(q) for the simulations k and k+1

differ by a constant shift, which corresponds to the difference of K values, as shown in

Fig. 18. The main task is to match the pieces together. One way is to fit the Kk in order

FIG. 18: The offset of free energy curves between two simulations k and k+1 is given by Kk−Kk+1

to get a smooth total F (q) curve. This is possible if the pieces k and k + 1 have sufficient

‘overlap’.

FIG. 19: Matching of histograms from different simulations

Another, quite involved method is the weighted histogram analysis method (WHAM).

The starting point is the requirement of a perfect match, minimizing the total error. The
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unbiased probabilities P (xj) of coordinate x falling into the bin j of the histogram and the

shifts Ki are obtained by a self-consistent solution of a set of equations

P (xj) =

∑N
i=1 ni(xj) exp[−βVi(xj)]

∑N
i=1Ni exp[−β(Vi(xj)−Ki)]

Ki = −kT log
bins
∑

j

P (xj) exp[−βVi(xj)] (IX.33)

(for a total of N simulations, i-th simulation contains Ni frames, ni(xj) is the number of hits

in bin j in simulation i). The WHAM procedure is included in a range of modern packages

for MD simulations.
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X. QM/MM

The standard force fields are designed to evaluate the energy of the system as fast as

possible, and this requirement makes several quite crude approximations necessary. One of

them is that the topology of the molecule remains the same in course of the simulation,

meaning that the covalent bonds may be neither created nor broken in the simulation.

Then, it is impossible to use such a force field to study the processes that would usually be

designated as chemical reactions.

A. Empirical approaches to chemical reactions

In spite of the mentioned problems, it is not quite impossible to describe a chemical

reaction with a force field. However, this may be done always for a single reaction, or a

restricted class of reactions only, using approximations that are appropriate in the specific

case; still, a generic force field applicable for any reaction is a mere illusion.

A possible way to describe a reaction would be as follows: An existing force field is used

for all of the system, except the bonds that are being broken or created. The bonds involved

in the reaction will then be re-parameterized, using probably a variant of Morse’s potential

or the like. Evidently, such an approach requires an ad hoc model of the molecule, and

considerable effort is likely to be spent by the parameterization.

Also obvious are certain limitations of such an approach. The restrictions on the use

of force field methods are more general than just that of the invariant connectivity of the

molecules. Rather, it is the electron density that does not change at all. It is thus further

impossible (or impracticable at the very least) to use a force field to describe a process

involving charge transfer, in other words, the change of atomic charges. This fact poses

another strong restraint on the classes of reactions that might be treated with molecular

mechanics force fields. Other phenomena of interest that cannot be described with molecular

mechanics, include photochemical processes, which involve electronic excitation of molecules.

B. The principle of hybrid QM/MM methods

Without loss of generality, we may assume that the changing electronic structure is

localized in a small part of the studied molecular system. An example may be a reaction
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FIG. 20: Enzymatic reaction. The substrate in the binding pocket and the amino acids in contact

shown as atoms; the rest of the enzyme shown as ribbons. Mulholland et al. (2008).

on a substrate which is catalyzed by an enzyme, see Fig. 20. Of the huge system, only the

substrate and several atoms of the protein are involved in the reaction, while the rest of the

protein and all the surrounding water and ions stay outside of the process. However, these

seemingly inactive parts do interact with the substrate be means of non-bonded forces, and

maintain the structure of the entire system.

So, the studied process is of quantum nature (a chemical reaction, but it may be some

photochemistry as well) and thus, it must be described by a quantum chemical method.

The overwhelming majority of the system (most of the enzyme and all of the water) is not

directly involved in the process, but affects the reaction by way of non-bonded interactions;

here, a description with an MM force field would be sufficient. It turns out to be a good

idea to combine both approaches: The (small) region where the chemical reaction occurs

will be described with a quantum-chemical method, while an MM force field will be used to

deal with the (large) remaining part of the system, see Fig. 21. Obviously, the interaction

FIG. 21: QM/MM treatment of an enzymatic reaction.
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of both subsystems must be taken into account correctly, as well, so that the total energy

may by expressed in a simple fashion as

Etotal = EQM + EMM + EQM/MM (X.1)

Quite a few hybrid schemes like that have been proposed so far, and they are usually called

quantum mechanics-molecular mechanics (QM/MM) or embedding. These date back to a

first study by Warshel and Levitt in 1976.

Both QM and MM calculations (yielding EQM and EMM) do not differ much from those

performed on ‘normal’ systems not taking part in any QM/MM scheme. However, the key

issue is how to treat the coupling of both parts of the system, to obtain EQM/MM. This is

the art of QM/MM calculations, and the rest of this section will deal with that topic.

C. Embedding schemes

The methods to couple the QM and MM systems differ in the excess of this coupling, or

in that how large a part of this coupling is neglected. We will have a look at these methods

in the order of increasing complexity (corresponding to the increasing completeness).

1. Unpolarized interactions (Mechanical embedding)

The simplest idea to account for the interactions between the QM and MM regions is to

use a force field. In order to do that, atom types must be assigned to the QM atoms, because

these determine the vdW parameters; further, their atomic charges must be evaluated – for

instance, Mulliken charges may be used. It is then possible to calculate the QM/MM energy

with the Coulomb law and the Lennard-Jones potential as

EQM/MM =

QMatoms
∑

i

MMatoms
∑

m

(

qMull
i · qm
rim

+ 4εim

(

σ12
im

r12im
− σ6

im

r6im

))

(X.2)

where the Coulomb interaction may prove necessary to be scaled up for neutral QM zones,

to account for the missing polarization of the wave function by the MM zone.

Certain specific combinations of force fields and quantum-chemical methods lead to very

good results for specific classes of molecules and reactions; generally, care must be taken. . .
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2. Polarized QM / unpolarized MM (Electronic embedding)

The clear deficiency of the mentioned model is that the QM system, or its wave function, is

not affected by the MM system whatsoever. Actually, the wave function should be polarized

by the environment (MM system), which is represented by point charges.

A step to improve the description is to include the electrostatic interaction with the MM

charges in the QM Hamiltonian, whatever the QM method is – semiempirical, HF, DFT or a

correlated method. The interaction of QM electrons with MM point charges moves from the

EQM/MM term (where it was described with a force field) to the quantum energy EQM, and

is described as an interaction of a charge density with point charges; then, it has the same

form as the interaction with QM nuclei and brings on little increase of the computational

cost. The interaction of QM nuclei with MM point charges may remain in EQM/MM.

Thus, the QM Hamiltonian changes to (schematically, may be method-dependent)

Ĥ ′
QM = ĤQM −

QMelectrons
∑

j

MMatoms
∑

m

qm
rjm

(X.3)

and the EQM/MM term is considered excluding the electrostatic interaction of QM electrons

with MM atoms, so that only the nuclear charges Zi remain:

E ′
QM/MM =

QMatoms
∑

i

MMatoms
∑

m

(

Zi · qm
rim

+ 4εim

(

σ12
im

r12im
− σ6

im

r6im

))

(X.4)

A QM/MM study would then run as follows:

1. The choice of specific QM and MM methods. Since the quantum-chemical calculation

is used to describe the most interesting part of the system, as well as it is by far

the most resource- and time-consuming component of the calculation, particular care

must be taken with the selection of the QM method – the requirements regard both

accuracy and computational efficiency, at the same time.

2. Determination of the Lennard-Jones parameters for the QM part of the system (for

the calculation of EQM/MM). One can use either ‘normal’ parameters from a force field,

or attempt to develop a special set of LJ parameters for the used QM method.

3. The simulation itself. Every step of the simulation involves one QM calculation, one

MM calculation and a calculation of EQM/MM. The properties of interest (possibly but

not necessarily of quantum character) are then evaluated as ensemble averages.
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3. Fully polarized (Polarized embedding)

The QM/MM variant just described is already a very good approach with good changes

for acceptable accuracy. The point at which it may be considered somewhat unbalanced

is that whereas the QM system is being polarized by the MM charges, the MM molecules

themselves cannot be polarized.

Should this fact be problematic in a study of a particular chemical process, it is possible

to include this phenomenon in the QM/MM framework as well. However, in such a case, it

is necessary to use a force field that makes it possible to account for the polarization of MM

atoms or molecules.

Most of the standard force fields do not include polarization terms, mainly because of

the extra computational effort. Every MM atom or molecule is assigned a polarizability α,13

and an induced dipole at each polarizable center is then obtained as

~µind = α · ~E (X.5)

where ~E is the intensity of electric field induced by all the surrounding atomic point charges

and all the induced dipoles. Because of that, the induced dipoles must be evaluated iter-

atively, until convergence (self-consistence) is reached. There are two possible issues with

this procedure: (i) its iterative character makes the calculation an order of magnitude more

time-consuming than a non-polarizable MM calculation of the same system, and (ii) the

convergence of dipoles may be potentially problematic.

Within a QM/MM scheme involving a polarized MM method, the induced dipoles ~µind

interact with the QM nuclei (i.e. some extra point charges) and with the QM electron density.

Thus, the entire QM/MM calculation has to be performed iteratively until self-consistency

is reached, and both the QM calculation and the MM treatment of induced charges proceed

in a loop. This makes the computational cost rise dramatically.

To date, no conclusive answer has been given to the question if the completely polarized

methodology brings a significant improvement if compared with the previously mentioned

approach (polarized QM / unpolarized MM). Above all, the improvement would have to be

necessary to justify the quite extreme computational cost.

13 In principle, polarizability is a symmetrical tensor of rank 2. If isotropic polarizability is considered then

α becomes a single value (scalar).
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D. Covalent bonds across the boundary

All of the QM/MM schemes discussed so far involved purely non-bonded interaction

between the QM and the MM subsystems. However, it may well turn out desirable or

even necessary to divide the whole system in such a way that the QM and MM regions

are connected with one or several covalent bonds. In such a case, a special treatment of

the QM/MM boundary is necessary in order to perform a QM/MM calculation. Several

possibilities are presented in the following.

1. Linear combination of molecular fragments

Imagine one wishes to simulate a large molecule, of which actually only a small part has

to be treated quantum-chemically. The situation is more favorable if the interaction of the

intended QM region with the rest of the molecule may be regarded as exclusively steric, i.e. if

the electronic structure of the QM region is virtually unaffected by the rest of the molecule.

This would be the case if this rest is composed of non-polar, i.e. alifatic or aromatic (even

though large) groups(s), see Fig. 22 for an example.

FIG. 22: A metallic complex with bulky non-polar functionalities. The five benzyl groups labeled

with R are ‘substituted’ by H atoms in QM calculations. The remaining benzyl group is the donor

in a hydrogen transfer reaction, and is thus included in the QM region. Reprinted from Cramer.

In such a case, the molecule may be regarded as a kind of a sum of the individual

functional groups. The electronic structure of the QM system will be regarded as equal

to the structure of a similar molecule where the bulky non-polar groups are replaced by

hydrogen atoms. Then, the total energy may be expressed as the sum of energies of the

35



X QM/MM 36

moleculare fragments (the QM-molecule ‘capped’ with hydrogens, and the bulky non-polar

MM-molecules) like

Etotal = E large
MM +

(

Esmall
QM − Esmall

MM

)

=

= Esmall
QM +

(

E large
MM − Esmall

MM

)

(X.6)

where the ‘large’ system is the entire molecule, and ‘small’ denotes the QM region. One

can understand this approach so that the part of the MM energy corresponding to the

‘small’, interesting molecular fragment is substituted by corresponding QM energy (first line

in Eq. X.6). The alternative way to think of Eq. X.6 (second line) is to concentrate on the

‘small’ fragment and its QM energy; the effect of the added non-polar groups is the added

as a correction (in parentheses).

2. Link atoms

A more difficult situation arises if the intended MM region cannot be regarded as in-

teracting only sterically, and there is for instance strong electrostatic interaction with the

QM region. Typically, this is the case in proteins, where there are always polar and even

charge amino-acid residues in the MM region, which polarize the electron density of the

QM region (which is usually the binding site of a ligand or similar). What is missing in

the approach presented in Section XC2 is the description of covalent bonds crossing the

QM/MM boundary.

FIG. 23: Link atoms. Left: The QM/MM boundary cuts a bond between two sp3-C atoms and a

link hydrogen atom is used. Right: The link atom is placed on the C–C bond that has been cut;

possible problem is that non-bonded interactions between the H and close MM atoms may diverge.
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Link atoms are atoms that replace the covalently bonded MM system at the boundary, see

Fig. 23. Usually, bonds between two sp3-carbon atoms are chosen to be cut, and hydrogens

are used as link atoms because of the similar electronegativity of carbon and hydrogen. It

is thus desirable to define the QM region so that the bonds to be cut are as unpolar as

possible, in order to minimize errors. The link hydrogen atom is then placed on the original

C–C bond, in a typical C–H bonding distance from the QM carbon atom (Fig. 23 right).

The total energy may then be evaluated in the fashion called additive coupling. As the link

atom is not really part of the QM region, the terms in expression for EQM that involve the

orbitals on the link atom are not evaluated. An obviously interesting point are the bonded

interactions (bonds, angles and dihedral angles) involving the bond crossing the boundary.

Their energy contributions are generally calculated with the force field. A possible exclusion

are angles involving 2 QM atoms and 1 MM atom, and dihedrals with 3 QM atoms and 1

MM atom, which are omitted in some approaches.

Another important issue is that of MM atoms bearing point charges, that are situated

very close to the QM system – typically, extremely close to a link atom. These would

have unphysically large influence on the electronic structure of the QM system. Therefore,

particular care must be taken of the charges of close MM atoms: These may be scaled down

or even zeroed; alternatively, only their interaction with the QM atoms near the boundary

may be scaled down or zeroed. A promising approach consists in the replacement of the close

point charges by gaussian charge distributions – this maintains all charges while avoiding

most of the trouble with too high interaction energies.

Alternatively, it is possible to apply the Eq. X.6 again, with the QM region (‘small’) now

including the link atoms:

Etotal = E large
MM +

(

Esmall+L
QM − Esmall+L

MM

)

(X.7)

This is called the subtractive coupling.

The concept of link atoms is used very frequently in the studies of biomolecules, when

quantum description is desired. The artifical separation of the molecular system in two brings

on certain issues that need to be resolved in order to obtain correct results. Nevertheless,

the development of QM/MM methodology has advanced considerably in the recent years,

so that it is now considered to be a de facto standard tool in computational biophysics.
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Deficiency of subtractive coupling – deprotonation of an alcohol

CH3CH2CH2CH2OH → CH3CH2CH2CH2O
− +H+

This reaction takes place in a small region of a large molecule. So, we can describe

the ‘interesting’ region with QM – this will correspond to a methanol molecule. The

rest of the molecule will be described as whole butanol with MM:

E
QM/MM
butanol = EQM

methanol +
(

EMM
butanol − EMM

methanol

)

We wish to evaluate the energy as a function of the O–H distance r. Let us assume

the parameters for methanol and butanol to differ only in the force constant kOH

for the O–H bond. The remaining terms will give a constant independent of r:

E
QM/MM
butanol (r) = EQM

methanol(r) +

(

1

2
kOH
butanol · (r − r0)

2 − 1

2
kOH
methanol · (r − r0)

2

)

+ const.

= EQM
methanol(r) +

1

2

(

kOH
butanol − kOH

methanol

)

· (r − r0)
2 + const.

The MM energy remains in the form of a term proportional to r2. For large r, the

QM energy will be proportional to −1
r
, due to Coulomb’s law:

lim
r→∞

EQM
butanol(r) = lim−1

r
= 0

The asymptotic behavior of total energy will look like

lim
r→∞

E
QM/MM
butanol (r) = lim

(

−1

r
+

1

2
k · r2

)

= lim r2 = ∞

So, the inequality of kOH for methanol and butanol will make the total energy grow

over all limits, for large distances r. The entire effort will go in vain.

Note that such an error will not arise in the additive coupling at all. Methanol

will be calculated with QM, and something like propane with MM. This way, the

parameters for the hydroxyl group are not required at all.38
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Excursion – the linking scheme

The atom charge in most force fields are designed in such a way that certain groups

of atoms maintain neutral or integral charge. See an example of the Charmm force

field:

Now, let us take the side chain as the QM system. Then, the atom CA is very close

to the link atom placed in between CA and CB, and so the point charge on CA

would disturb the QM region drastically. Also, it is impossible to remove the CA

atom simply, because the entire backbone would not be charge-neutral any more.

There are a couple of possibilities to deal with this problem:

• A drastic but still often used linking scheme (‘exgroup’ in Charmm) is to

remove all charges of the group close to the QM region. In our example, these

are CA, HA, N and HN. Obviously, we would lose the strong N–HN dipole

within this scheme, which could lead to very inaccurate result.

• A better way (‘div’ in Charmm) is to divide the charge of the so-called host

atom (here CA) among the remaining atoms of the whole host group (com-

posed of HA, N and HN). The resulting charges in this example would be:

CA=0, HA=0.11, N=−0.44, HN=0.33.

The latter approach is limited by the requirement to have the QM/MM boundary

between two individual charge groups. ‘Cutting’ of a covalent bond within a single

charge group (e.g. between CB and OG in this residue) is only possible with the

former approach (the modified charges would be CB=0, HB1=0, HB2=0).
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3. Frozen orbitals

As mentioned, the introduction of link atoms may cause problems with non-bonded in-

teractions, because of the possibly extremely short distance between these artificially added

QM atoms and nearby MM atoms. Also, the representation of charge densities by MM

point charges may result in inaccuracy and/or computational instability. A promising at-

tempt to avoid this issue may be to introduce no new atoms, but rather treat the orbitals on

the QM/MM boundary in a special way. The shape of these orbitals can be held constant

during the simulation, hence the term frozen orbitals.

With this approach, we will have not two but rather three regions in the simulation: the

QM and MM regions as before, and an auxiliary region on the QM/MM boundary on top of

that. The atoms in this auxiliary region possess their normal nuclei and electron densities

expressed using the basis of atomic orbitals. Then, the auxiliary region actually possesses

a quantum character, but still its interaction with itself as well as with the MM system

can be calculated classically.14 Another only slight complication is the energy of interaction

of the QM system with the auxiliary – this adds another term to the Hamiltonian which

corresponds to the interaction of the wave function with the frozen charge density in the

auxiliary region, which is only slightly more complex than the interaction with point charges.

In the simple case of a single covalent bond being cut by the QM/MM boundary, the

auxiliary region may be very small, as seen in Fig. 24.

FIG. 24: Frozen orbital scheme. Red – the frozen sp3 orbital for the bond crossing the boundary.

There are basically two approaches how to freeze the electron density. In the localized

14 This may seem awkward but it is not so bad: interaction of (frozen) charge density with itself, and inter-

action of (frozen) charge denstity with a set of point charges; this is no issue in a calculation whatsoever.
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SCF method (LSCF), every covalent bond crossing the QM/MM boundary is represented by

a single frozen orbital – this is the (hybrid) atomic orbital localized on the QM atom before

the boundary, which is calculated once at the beginning of the simulation and does not

change shape afterwards any more. Some care must be taken of the occupation of the frozen

orbitals in order to handle the density correctly, and this requires accurate accounting.

The generalized hybrid orbital approach (GHO) is different in that the QM/MM boundary

does not cut any covalent bond, but rather the boundary passes through an atom. Here,

the (hybrid) atomic orbitals on this particular atom which would belong to the MM region,

are considered to be frozen. Their populations are calculated so that the resulting charge

density corresponds to the point charge that this atom would have in an MM calculation.

The remaining orbital on the atom, which points inwards the QM region, is frozen in shape

but its occupation is free to vary in the QM calculation.

The approaches using frozen orbitals have received certain attention in the recent years

and they are constantly being developed. However, the method of link atoms is clearly

being applied more often, and has already been implemented in many popular simulation

packages.

E. Advanced stuff and examples

1. QM/QM/MM

It is possible to improve the process of dividing the entire molecular system, so that there

are three disjunctive regions: Then, one may be treated with an advanced, expensive QM

method (correlated methods like CC, CAS. . . ), another region surrounding the first one will

be described with a faster QM method (like DFT or semiempirical), MM will be used for

the rest of the system, probably including the solvent. This approach may be referred to as

QM/QM/MM, and an example is the Oniom scheme15 implemented in Gaussian.

2. Photochemistry–Retinal

Retinal is a polyene, covalently bound to a lysine side chain via a protonated Schiff base.

15 a clear connotation with the layers of an onion
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FIG. 25: Retinal (the chromophore) in rhodopsin, with the counterion Glu113 and charged Glu181.

It is not easy to choose a correct size of the QM region, and there are many possibilities:

size goodness, issue

polyene (ring to NH) bad, boundary cuts a polar bond

retinal+CH2 bad, link atom too close to the important region

QM1 retinal+sidechain to CB fair, but no charge transfer to Glu113 possible

QM2 QM1+counterion better, but no charge transfer to Wat

QM4 QM2+Wat2b+Thr94 good, but no polarization at Glu181

QM4+Glu181 very good, but. . .

A highly correlated method (like CAS-PT2) is required to calculate the electronic spec-

trum of a chromophore in a protein (like the retinal within a rhodopsin). Also, it is crucial to

describe the interaction of the electronic structure of retinal with the atoms of the protein.

On the other hand, the vdW interaction with the protein is not so important, because the

structure of the molecular system does not change during the photochemical process. Thus,

a single-point calculation is sufficient. For the geometry optimization or MD simulation of

the system, the complex electronic structure of retinal makes the use of a (modest) QM

method necessary.

The calculation starts with a QM/MM calculation with approximative DFT, and the

structure of the whole protein is optimized. The coordinates of QM atoms are written into

a file, and so are the coordinates of all MM atoms together with the charges. These sets of

data are fed to a highly correlated method, for the calculation of excitation energy.
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XI. IMPLICIT SOLVENT AND COARSE GRAINING

A. Continuum electrostatic methods: Free energy of solvation

Up to now, we treated the molecules of interest either in the gas phase or immersed in an

explicit solvent, meaning a solvent represented by individual atoms/molecules. Then, the

difference of solvation free energy could be evaluate by such methods like the free energy

perturbation or umbrella sampling (PMF).

Consider the example of a polypeptide in the α-helix and β-sheet conformations. The

free energy difference of the two structures is given by

• the difference of internal energies / enthalpies

• the entropic contributions – above all the vibrational component of the configurational

entropy

• the difference of free energies of solvation

The α-helix has a much larger dipole moment than the β-sheet, due to the peptide bonds

pointing in the same direction with respect to the axis of the helix. Because of that, the α-

helix is better solvated in a polar medium (like water). Therefore, the solvation (qunatified

by the solvation free energy) plays a key role in the equilibrium between the conformations

of the peptide in solution.

In this chapter, we will discuss how to describe the solvent with an implicit treatment.

Since the number of solvent (water) molecules may easily become excessive for a large solute

molecule, this approach may be preferred to an explicit representation of solvent, which

would be too costly.

Several energy contributions have to be considered for the process of solvation:

• A cavity (Fig. 26) in the solvent bas to be formed against the outside pressure. This

also involves the necessary rearrangement of the solvent molecules at the surface of

the cavity. The energy contribution ∆Gcav accounts for i.a. the decrease of entropy

and the loss of solvent–solvent interactions.

• The van der Waals (∆GvdW) and electrostatic (∆Gele) interaction of the solute

molecule with the solvent (Fig. 27).
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FIG. 26: Formation of the cavity

FIG. 27: Electrostatic and vdW interactions upon inserting the molecule into the cavity.

Then, the total solvation energy is

∆Gsolv = ∆Gcav +∆GvdW +∆Gele (XI.1)

An important concept is that of the solvent accessible surface area (SASA): We consider

the molecule to be a solid body exposed to the solvent, and SASA is then the surface area

of this body. In a reasonable approximation, the terms ∆Gcav and ∆GvdW are taken to be

proportional to SASA. Since arbitrary surfaces are difficult to involve in calculations, it is

convenient to obtain the total surface of the molecule from the surfaces of the individual

atoms of the molecule, Si.
16 A practical approach is then to write

∆Gcav +∆GvdW =
∑

i

ci · Si (XI.2)

Since this term does not contain the electrostatic contribution (which will be discussed in

the following) it is appropriate to parameterize it with respect to the solvation energies of

hydrocarbons.

16 In principle, it is possible to determine the SASA of the molecule as a whole. This may be done by rolling

an imaginary ball of a certain diameter (typically 2.8 Å to mimic H2O) on the molecular surface.
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When does it work?

• will probably work if the electrostatic effect of the surrounding solvent is dominant.

An example is the shielding of solvent-exposed charged side chains of proteins.

• will not succeed if some kind of specific interaction between the solute and the solvent

plays a role, such as hydrogen bonding. An example may be the dynamics of small

peptides dissolved in water; a tripeptide can form either an intramolecular hydrogen

bond (with a seven-membered ring) or hydrogen bonds with the solvent. This fine

balance is difficult to describe only via general electrostatic interactions.

In the following, we will discuss several models to evaluate the term ∆Gele. As discussed in

the chapter on non-bonded interactions, the electrostatic energy of a point charge q located

at ~r is

Eele = q · Φ(~r) (XI.3)

where Φ(~r) is the electrostatic potential (ESP) induced by the charge distribution in the

rest of the system. To obtain the solvation energy, we have to calculate the electrostatic

potential of the protein in vacuo Φvac(~r), and in solution, Φsolv(~r). The solvation energy

then follows:

∆Eele = q · Φsolv(~r)− q · Φvac(~r) (XI.4)

With the defintion of the reaction field

Φrf(~r) = Φsolv(~r)− Φvac(~r) (XI.5)

the solvation energy follows as

∆Eele = q · Φrf(~r) (XI.6)

As we learned up to now, the potential energy E is related to one point on the potential

energy surface. Moving to the free energy, we have to average over all the solvent configura-

tions to include the entropy contributions.17 Thus, it would be af advantage if we are able

to determine the reaction field in such a way that it includes these contributions, so that we

effectively obtain the free energy:

∆Gele = q · Φrf(~r) (XI.7)

17 And, in an NPT ensemble, the enthalpy includes the PV term in addition (PV = NkBT for ideal gas).
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1. Continuum electrostatic methods: the Born and Onsager models

Born (1920) determinded analytically the work needed to bring a charge q from vacuo

into a spherical cavity of radius a formed in a solvent with a dielectric constant ε (Fig. 28

left) as

∆Gele = − q2

2a

(

1− 1

ε

)

(XI.8)

The dielectric constant takes values of 1 for vacuo (thus ∆Gele = 0), 80 for water and

between 2 and 20 for protein environment.

FIG. 28: Solvation of a point charge (left) and a point dipole (right).

Onsager and Kirkwood (1930) developed a model for a dipole in a cavity (Fig. 28 right).

The dipole moment of a molecule µ induces charges at the surface of the cavity – the molec-

ular dipole is an “action” which induces a “reaction” of the solvent, hence the electrostatic

potential is called the reaction field, which was derived as

Φrf =
2(ε− 1)

2ε+ 1
· 1

a3
· µ (XI.9)

∆Gele = −1

2
Φrf · µ (XI.10)

These simple models are implemented in many standard quantum chemistry programs

as well as simulation packages, in order to calculate solvation energies. Of course, even for

small molecules, the point charge or dipole approximation in combination with a spheri-

cal or ellipsoidal surface is quite unrealistic. Therefore, the polarizable continuum model

(PCM) extends these schemes to arbitrary surfaces constructed with the use of vdW radii

of the atoms. An alternative approach are the conductor-like screening models (COSMO),

which derive the polarization of the dielectric (insulating) solvent from a scaled-conductor

approximation.
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2. Continuum electrostatic methods: Poisson–Boltzmann equation (PBE)

For large molecules, other approximations were developed, starting from the Poisson

equation

∇ε∇Φ = −4πρ (XI.11)

This is a partial differential equation. Given are the charge distribution ρ and the dielectric

constant ε, and we wish to solve the equation for Φ.

One way to solve it is to discretize the problem on a three-dimensional grid. Here, we

have the charge distribution and the (non-constant) dielectric constant distributed on the

grid, and the potential Φ is calculated on every grid point iteratively (Fig. 29), using finite

differences for the second derivative.

FIG. 29: Representation of Φ, ρ and ε on a grid.

Very often, we want small ions to be part of the solvent. In certain situations, ions

are very important, like in the simulations of DNA, where counterions are necessary to

compensate for the charge on the phosphate groups. If we do an MD with explicit solvent,

the include the ions as particles, naturally. But, how can we accomplish this within a

continuum representation of the solvent?

If we know the electrostatic potential in the system, the energy of an ion is

Ei(r) = qi · Φ(r) (XI.12)

and with the Boltzmann distribution, the density at that point is

ni(r) = n0
i · exp

[

−qi · Φ(r)
kBT

]

(XI.13)

47



XI Implicit solvent and coarse graining 48

with n0
i being the number density in bulk solution, or concentration. Therefore, anions con-

centrate in regions with positive Φ whereas cations in regions with negative Φ. Multiplying

with the ion charges, we obtain the charge distribution of the ions:

ρions =
∑

i

qi · n0
i · exp

[

−qi · Φ(r)
kBT

]

(XI.14)

Now, if we have two kinds of ions with opposite charges (e.g. Na+ and Cl− with q = ±1) in

the solution, we will have terms like

1 · exp[−1 · Φ(r)/kBT ]− 1 · exp[1 · Φ(r)/kBT ] (XI.15)

which may be combined by noting the definition of hyperbolic functions:

exp[x]− exp[−x] = 2 sinh[x] (XI.16)

Then, adding the charge distribution due to the ions, to the Poisson equation, we obtain

the Poisson–Boltzmann equation:

∇ε∇Φ = −4πρ+
∑

i

qi · n0
i · sinh

[

qi · Φ(r)
kBT

]

(XI.17)

This equation is usually written in the form

∇ε∇Φ = −4πρ+ ε · κ2 · kBT
q

· sinh
[

q · Φ(r)
kBT

]

(XI.18)

with the Debye–Hückel parameter

κ2 =
8πq2I

ε · kBT
(XI.19)

(ionic strength I = 1
2

∑

i ciz
2
i , ci – concentration, zi charge of ion i).

At low ionic strength, the difficult differential equation may be simplified by truncating

the Taylor expansion of sinh, which yield the linearized PBE of the form

∇ε∇Φ = −4πρ+ ε · κ2 · Φ(r) (XI.20)

The PBE describes two effects of solvation: First, the charge distribution on the protein

polarizes the dielectric outside (the “solvent”). This leads to a screening of the effect of

the solvent-exposed charges of the protein atoms. The “solvent molecules” will arrange

around the charge, and dipoles will be induced, which will compensate for the charge largely.
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Effectively, the charges pointing into the solvent will be nearly canceled. The second effect is

that the solvent ions will be distributed so that the overall charge distribution will become

more uniform. For instance, if a negative charge points into the solvent, a positive ion will

be located close to it, effectively reducing the magnitude of the electrostatic field. These

two points usually become important when (photo-)chemical reactions in proteins are to be

described. The solvent around a protein should always be taken into account.

When calculating solvation energies, we have to determine the reaction field. For this,

we perform one PBE calculation ‘in vacuo’ (ε = 1) and one for the solution (ε = 80)

Φrf = Φε=80 − Φε=1 (XI.21)

yielding the solvation free energy as

Gelec =
1

2

∑

i

qiΦrf (XI.22)

The computational cost of the solution of PBE becomes excessive if PBE has to be solved

several million times during a MD simulation (remember, it has to be done in every MD

step). Therefore, approximations have been developed.

3. The generalized Born (GB) model

A simple idea is to use the Born equation XI.8 for the atomic charges of the biomolecule,

to calculate the solvation energy of the charges:

∆G1
ele = −

(

1− 1

ε

)

∑

i

q2i
2ai

(XI.23)

What changes upon solvation as well, is the interaction of the individual charges. The

interaction energy in a medium with ε > 1 may be expanded as

Eele =
1

2

∑

i 6=j

1

ε

qi · qj
rij

=

=
1

2

∑

i 6=j

qi · qj
rij

−1

2

(

1− 1

ε

)

∑

i 6=j

qi · qj
rij

(XI.24)

where the red term is the usual Coulomb interaction in vacuo, and the blue one corresponds

to the reaction field contribution – the contribution due to solvation:

∆G2
ele = −1

2

(

1− 1

ε

)

∑

i 6=j

qi · qj
rij

(XI.25)
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The solvation contribution to the free energy then follows as the sum of the terms ∆G1
ele+

∆G2
ele:

∆Gele = −1

2

(

1− 1

ε

)

(

∑

i

q2i
ai

+
∑

i 6=j

qi · qj
rij

)

(XI.26)

This formula describes the interaction of charges that are located in spherical cavities

with radii ai. For charged bodies of generalized shapes, the derivation is only valid if the

distance between the charges is large (rij ≫ ai + aj). In other words, Eq. XI.26 can be

considered valid for the interaction of the charges qi and qj in one of two limiting cases:

E =















q2i
ai
, if i = j (‘self-interaction, i.e. solvation energy)

qi · qj
rij

, if i 6= j and rij → ∞
(XI.27)

Therefore, the interaction of two charges with finite radii becomes the interaction of point

charges once the distance is large. But, what is the interaction energy for intermediate

distances of, say, 2 Å to 10 Å? What we need here is an expression that interpolates between

the limiting cases. It can be easily shown that a function of the form

f(rij) =

√

r2ij + aiaj exp

[

−
r2ij

4aiaj

]

(XI.28)

exhibits this behavior: The exponent vanishes for large r, so that f ≈ r; and the exponent

approaches unity for small r, giving f ≈ √
aiaj or ai. With this function, we can write

∆Gele = −1

2

(

1− 1

ε

)

·
∑

i,j

qi · qj
f(rij)

(XI.29)

for the free energy of solvation of charges within the Born approximation, involving

1. the solvation energy of every charge due to the Born formula

2. the change of the Coulomb interaction energy of the charges, due to solvation

Unfortunately, there is a fundamental problem with this equation. The Born equation

was derived for a charged particle with radius a, in contact with the solvent. But, many

charges will be deeply buried inside the protein, and will not ‘feel’ much of the solvent!

Therefore, if we use the same value of ai for all charges, the solvation energy of some charges

will be grossly overestimated.
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A solution would be to build an empirical model: The solvation energy of charge qi

∆G1
ele,i = −1

2

(

1− 1

ε

)

q2i
ai

(XI.30)

depends on ai. Then, if we wish to scale down this energy for a charge inside the protein, we

can use a larger value of ai than for the same charge located at the surface of the protein.

What needs to be done is to determine ai for every charge. In principle, this could be done

by performing PBE calculations for every charge, which would yield ∆G1
ele,i and also the

ai. Alas, this is too costly, and doing PBE calculations is exactly what we wanted to avoid.

Therefore, we need an approximation to calculate the radii ai.

4. A simple approximation to the Generalized Born (GB) model

The work necessary to transfer a charge distribution ρ into a polarizable medium is

∆G =
1

2

∫

ρ · ΦdV (XI.31)

Now, consider a charge qi inside a protein surrounded by water (εW ). It can be shown that

the energy of this charge can be written as

∆Gi
ele = − 1

8π

(

1− 1

εW

)∫

ext

q2i
r4

dV (XI.32)

where the integration proceeds over the ‘exterior’ of the protein, i.e. over the whole space

outside the protein (Fig. 30).

FIG. 30: Integration over ‘int’ or ‘ext’

Comparing with the Born formula (Eq. XI.8), we find

1

ai
=

1

4π

∫

ext

1

r4
dV (XI.33)
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with r being the distance from the charge to the ‘boundary’ of the protein. This ai will vary

depending on the location of the charge – it will be larger for charges buried inside of the

protein! The integral over the outside of the protein can be transformed into an integral

over the ‘interior’ of the protein, using the van der Waals radius αi of atom i:

1

ai
=

1

αi

− 1

4π

∫

int,r>αi

1

r4
dV (XI.34)

A possible approximation of this is to fill the space inside with spheres, and approximate

thereby the volume of the protein molecule by the volume of the individual spheres:

1

ai
=

1

αi

−
∑

j 6=i

1

4π

∫

sphere j

1

r4
dV (XI.35)

FIG. 31: The simple GB model

However, this approximation turns out to be insufficient. Instead, one can try to model

the space to be integrated over with an empirical formula: the model has to represent the

space ‘int’ in Eq. XI.34. Every atom has a volume Vj, and since ∆Gi ∝ a−1
i , the volumes of

all other atoms reduce the solvation energy of atom i, i.e. they increase ai by

1

ai
=

1

αi

− Vj
r4ij

(XI.36)

where rij is the distance between the charge i and the atom j, which reduces its solvation

energy. The model has the following terms:

a−1
i =

1

λ · RvdW,i

− P1
1

R2
vdW,i

−
bond
∑

j

P2Vj
r4ij

−
angle
∑

j

P3Vj
r4ij

−
nonbond
∑

j

P4Vj
r4ij

· CCF(P5, rij) (XI.37)
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FIG. 32: The empirical GB model. blue – the binding neighbors, black – the angle, green – the

nonbond ‘atoms’.

The Born radius of atom i in solution is λ ·RvdW,i, and then reduced due to a quadratic term,

the sum over the bonded, neighbors (bonded, angles) and the all non-bonded interactions.

For the latter, the function CCF is unity when the atoms do not have overlap, but reduced

when they overlap. The parameters λ, P1, . . . , P5 are fitted to reproduce the PBE results for

the solvation energies of atoms in peptides and proteins. This model works (in contrast to

the simple analytical one discussed above Fig. 31) due to the empirical fitting of parameters.

5. Practical example – MM-PBSA

The implicit solvent models are used to evaluate the solvation energy and force acting

upon the atoms of solute in an MD simulation, but this not the only possible application.

The considerable interest in free energies of binding of ligands to biomolecules, or even in

the absolute free energies of molecules in solution led to the development of post-processing

approaches to evaluate free energies. Here, a normal simulation (no matter if with an implicit

or explicit solvent) is run, and the necessary components of the free energies of interest are

evaluated by an analysis of the trajectory obtained.

The MM total energy of the system is evaluated without cutoff to yield the internal

energy. The electrostatic contribution to the solvation free energy is evaluated with some

of the methods described in this chapter, whereas the non-polar contribution is determined

with SASA-dependent terms. Finally, the configurational entropy can be estimated with a

normal-mode analysis. The total free energy is approximated by the sum of these terms.

This approach is undoubtedly very approximative and the various methods used are of

very different character. Yet, results of very good quality may still be obtained.
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B. United-atom force fields and coarse-grained models

In the studies of biomolecules, a proper and efficient treatment of the solvent is the key

to the feasibility of the entire model. However, it may well happen that there are other

components in the system that contain a large number of atoms – an example may be the

lipid in the studies of transmembrane proteins. Even worse, the biomolecule itself may be

exceedingly large – a very large protein or a long nucleic acid species. In such cases, it is

necessary to modify the description of the biomolecule, and to design a simplified molecular

model.

Early force fields (like Weiner 1984 and others) already used a similar idea. Within the

united-atom force fields, each hydrogen atom was considered not individually, but rather

condensed to the heavy atom to which it was connected. This way, the number of atoms

was reduced considerably if compared with the all-atom force fields, which earned popularity

in the 1990’s. It is necessary to mention here that this approach works very well for non-

polar C–H bonds, so that it is a very good approximation to consider a methyl group

constituting one united atom. On the other hand, the substitution of a polar O–H group by

a single particle is obviously a very crude approximation which will not work unless there

are further correction terms in the force field. The united-atom force fields found their use in

the modern computational chemistry e.g. in studies involving lipids, where each methylene

group constitutes a united atom, cf. Fig. 33.

FIG. 33: A snapshot from the simulation of a lipid bilayer in water. The lipid (DOPC) is described

with a united-atom force field – every CH2 group is represented by a united atom. Downloaded

from the website of R. Böckmann.
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An advanced and sophisticated approach to cut the computational expense of simula-

tions is the coarse graining (CG) of the problem. Quite naturally, a way to accelerate the

evaluation of interactions is to reduce the number of particles involved. As it may not be

always possible to reduce the number of atoms, an alternative idea is to consider particles

composed of several atoms, so-called beads. Then, the number of inter-particle interactions

will decrease, and in spite of the possibly more complex form of these interactions, the com-

putational expense may be largely reduced as well. The necessary parameters of the force

field are often obtained by fitting to all-atom force fields.

FIG. 34: Left: The CG force field Martini – mapping of beads onto molecular fragments. Right:

A solvated peptide with Martini. Downloaded from the Martini website.

Every bead usually represents several atoms, and a molecule is composed of several beads,

refer to Fig. 34 for the Martini force field. Such CG force fields are particularly useful

for simulations of large-scale conformational transitions, involving either exceedingly large

molecular systems or excessive time scales, or both. Another example is the Vamm force

field for proteins, where every amino acid is represented by a single bead at C-α, see Fig. 35.

FIG. 35: The CG force field Vamm. Reprinted from Korkut & Hendrickson 2009.
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XII. ENHANCING THE SAMPLING

At room temperatures, normal nanosecond length MD simulations have difficulty over-

coming barriers to conformational transitions and may only sample conformations in the

neighborhood of the initial structure.

A. Molecular dynamics as a way to the global minimum

Quotation from “A molecular dynamics primer” by Furio Ercolessi, University of Udine,

Italy (www.fisica.uniud.it/~ercolessi).

Molecular dynamics may also be used as an optimization tool. Let us suppose that a set

of N particles has many possible equilibrium configurations – this is truly the case with large

(bio)molecules. The energy of these configurations is in general different, and one of them

will be the lowest; each of the configurations, however, corresponds to a local minimum of

the energy and is separated from every other by an energy barrier.

Finding the most energetically favorable structure – i.e. the global minimum of the en-

ergy function – within an approach based on traditional minimization techniques (steepest-

descents, conjugate gradients, etc.) is tricky as these methods do not normally overcome

energy barriers at all and tend to fall into the nearest local minimum. Therefore, one would

have to try out several (many) different starting points, corresponding to different “attrac-

tion basins” in the energy landscape, and relax each of them to the bottom of the basin.

The optimal structure would then be the one with the lowest energy, provided we were lucky

enough to select it in the list of candidates.

1. Simulated annealing

Temperature in an MD (or Monte Carlo) simulation is the key to overcome the barriers:

States with energy E are visited with a probability of exp[−E/kBT ]. If T is sufficiently

large, then the system will “see” the simultaneous existence of many different minima, still

spending more time in the deeper ones. By decreasing T slowly to zero, there is a good

chance that the system will pick up the deepest minimum and stay trapped there. This

consideration is the principle of simulated annealing: The (molecular) system is equilibrated

at a certain temperature and then (slowly) cooled down to T = 0. While this procedure does
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not guarantee that the true global minimum will be reached, it often does so. And, since no

a priori assumptions are made about the optimal structure, it often yields structures that

would have been difficult to foresee by intuition alone.

FIG. 36: Simulated annealing.

This method is often used to optimize the structure of molecular systems, but its validity is

much more general: Given an objective function Z(α1, . . . , αN) depending on N parameters,

one can regard each of these parameters as a degree of freedom, assign it a “mass”, and let

the system evolve with a molecular dynamics or Monte Carlo algorithm to perform simulated

annealing. One of the early applications of this method can be found in a famous paper

discussing an application to the problem of the traveling salesman (Kirkpatrick et al., Science

1983).

2. MD quenching

There is yet another possibility to make use of molecular dynamics not only to obtain the

minima of the energy, but even to approximate their relative free energies (or equilibrium

constants). An MD/quenching simulation consists of a usual MD trajectory, which is a

basis for subsequent minimizations: In regular intervals, the structure from the simulation is

subject to energy-minimization. In principle, we avoid the need to select starting structures

for our minimizations – instead, we let the MD simulation take care of that.
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FIG. 37: MD quenching.

The obtained (possibly many) minimized structures can be processed e.g. by a cluster

analysis to determine the set of unique optimal structures, their total energies and number

of hits. For a small molecular system, we would observe few unique structures, each occuring

many times; for larger systems, the number of unique structures would grow rapidly.

A potentially appealing feature of MD/quenching is the possibility to estimate the relative

free energies of the observed structures. If the MD simulation subject to post-processing

is long enough (i.e. if sufficient sampling of the configuration space is guaranteed) then the

ratio of their occurence (number of hits, ni) determines the equilibrium constant K, and

thus the free energy ∆G:

K =
n2

n1

∆G = −kBT logK = kBT log
n2

n1

(XII.1)

It is important to note that we consider whole regions of configuration space (as in Fig. X)

rather than points to be individual structures. Therefore, we obtain no curves of free energy

as a function of coordinate(s) but rather single values of free energy differences for certain

pairs of “structures”. There is an interesting, neraly philosophical question connected to

this – is there something like “free energy surface” at all? Or, like obviously is the case with

quenching, is it only meaningful to ask for discrete values of free energy differences?
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FIG. 38: MD quenching2.

B. Replica-exchange MD

Replica-exchange molecular dynamics (REMD, a.k.a. parallel tempering) is a method to

accelerate the sampling of configuration space, which can be applied even if the configura-

tions of interest are separated by high barriers. With REMD, several (identical) copies, or

replicas of the molecular system of interest are simulated at the same time, with different

temperatures. The essence of the method is that the coordinates together with velocities

of the replicas may be switched (exchanged) between two temperatures. In practice, the

probability of the replica exchange between temperatures T1 < T2 is determined in (regular)

time intervals from the instantaneous potential energies U1 and U2 in the corresponding

simulations as

P (1 ↔ 2) =











1 if U2 < U1,

exp
[(

1
kBT1

− 1
kBT2

)

· (U1 − U2)
]

otherwise.
(XII.2)

Then, if P (1 ↔ 2) is larger than a random number, the replicas in simulations at tempera-

tures T1 and T2 are exchanged.

When using REMD, there usually one replica is simulated at the temperature of interest

(often T1 = 300 K) and several other replicas at higher temperatures (T1 < T2 < T3 < . . .).

After, say, 1000 steps of MD, replica exchanges 1 ↔ 2, 3 ↔ 4 etc. are attempted, and

after next 1000 steps the same is done for 2 ↔ 3, 4 ↔ 5 etc. so that only the replicas

at “neighboring” temperatures can be exchanged. With such setup, the advantages of the
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simulations at high temperatures – fast sampling and frequent crossing of energy barriers –

combine with the correct sampling at all temperatures, above all at the (lowest) temperature

of interest. Although the computational cost of REMD simulations is increased (because

many simulations are running simultaneously), this additional investition of resources pays

off with extremely accelerated sampling. Moreover, the simulations running at different

temperatures are completely independent of each other between the points of attempted

exchange, making this problem trivially (embarassingly) parallelizable. The first application

of REMD was for a truly biophysical problem – folding of a protein (Sugita & Okamoto,

Chem. Phys. Lett. 1999).

FIG. 39: Replica-exchange MD.

An important point with REMD is a suitable choice of temperatures Ti. This depends on

(i) how frequent exchanges we wish (average probability P (1 ↔ 2)), (ii) the size of the system

(the number of degrees of freedom Ndof) and (iii) the number of temperatures/simulations.

For protein/water systems with all bond lengths constrained to their respective equilibrium

values (so that Ndof ≈ 2N , N – number of atoms), the average probability is related to the

difference of temperatures T2 − T1 = εT1 as

P (1 ↔ 2) ≈ exp
[

−2ε2N
]

(XII.3)

Using this relation, we can design the set of temperatures to suit our needs.

The REMD method can be likened to “super simulated annealing” without a need to

restart. The systems at high temperatures can feed new local optimizers to the systems at
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low temperatures, allowing tunneling between metastable states and improving convergence

to a global optimum.

1. Replica-exchange umbrella sampling

There is an interesting application of the replica-exchange idea concerning biasing poten-

tials rather than thermodynamic parameters (Okamoto et al., J. Chem. Phys. 2000). With

the replica-exchange umbrella sampling approach (REUS), several copies of the molecular

system are simulated with different biasing potentials – these are the separate umbrella-

sampling simulations as presented in a previous chapter. As with the previously described

REMD, an exchange of replicas with ‘neighboring’ umbrellas is attempted in regular inter-

vals. Obiously, the criterion for the acceptance of a replica exchange has to be modified,

and may read for instance

∆ =
1

kT1
(U1(q2)− U1(q1))−

1

kT2
(U2(q1)− U2(q2)) (XII.4)

P (1 ↔ 2) =











1 if ∆ ≤ 0,

exp [−∆] otherwise.
(XII.5)

where Ui is potential energy calculated with the energy function (including bias – umbrella)

from simulation i, and qi are the coordinates of all atoms from simulation i. With this setup,

improved sampling of the configuration space and thus increased efficiency of the simulation

may be expected.

It is even possible to do multidimensional replica exchange simulations, where the molec-

ular system is replicated with multiple different simulation parameters – for instance, various

temperatures and various biasing potentials.

C. Methods using biasing potentials

Using quotations by Helmut Grubmüller

(www.mpibpc.mpg.de/home/grubmueller/projects/MethodAdvancements/ConformationalDynamics

The energy landscapes occuring in large (bio)molecular systems feature a multitude of

almost iso-energetic minima, which are separated from each other by energy barriers of var-

ious heights. Each of these minima corresponds to one particular structure (‘conformational
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substate’); neighboring minima correspond to similar structures. Structural transitions are

barrier crossings, and the transition rate is determined by the height of the barrier.

Since in conventional MD simulations only nanosecond time scales can be covered, only

the smallest barriers are overcome in simulations, and the observed structural changes are

small. The larger barriers are traversed more rarely (however the transition process itself

may well be fast), and thus are not observed in MD simulations.

Several approaches to remedy this drawback by way of modifying the potential energy

surface of the molecular system have been proposed.

1. Conformational flooding

(Grubmüller, Phys. Rev. E 1995)

A method called ‘conformational flooding’ accelerates conformational transitions in MD

simulations by several orders of magnitude and thereby actually can bring slow confor-

mational transitions into the scope of simulations. From the ensemble generated by the

(unbiased = normal) MD simulation, a localized artificial ‘flooding potential’ Vfl of certain

(variable) strength can be constructed, meeting two requirements: (i) Vfl shall affect only the

initial conformation and vanish everywhere outside of this region of conformational space,

and (ii) it shall be well-behaved (smooth) and ‘flood’ the entire initial potential-energy well.

A multivariate (n-dimensional) Gaussian function exhibits such a behavior:

Vfl = Efl · exp
[

− Efl

2kBT
·

n
∑

i=1

q2i λi

]

(XII.6)

where Efl is the strength of the flooding potential. Here, the first n essential dynamic modes

with eigenvalues λi will be flooded, with qi being the coordinates along these modes.

This potential is included within subsequent ‘flooding’ (biased) simulations and rises

the minimum of the initial conformation. Thereby, the barrier height is reduced, and the

transitions are accelerated (following the theory of transition states). It is important to

note that this is achieved solely by modifying the energy landscape within the minimum

where the dynamics is already known and thus uninteresting; the barriers and all the other

minima – which we are interested in – are not modified at all. The bottom-line is that

‘conformational flooding’ is expected to induce unbiased transitions, i.e. those which would

be observed without the flooding potential, too, on a much longer time scale.
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FIG. 40: Sketch of the conformational flooding (from the website of H. Grubmüller).

2. Metadynamics

Using quotation by Alessandro Laio (people.sissa.it/~laio/Research/Res_metadynamics.php)

The method is aimed at reconstructing the multidimensional free energy of complex

systems (Laio & Parrinello, Proc. Natl. Acad. Sci. USA 2002). It is based on an artificial

dynamics (metadynamics) performed in the space defined by a few collective variables S,

which are assumed to provide a coarse-grained description of the system. The dynamics is

biased by a history-dependent potential constructed as a sum of Gaussians centered along

the trajectory of the collective variables. A new Gaussian is added at every time interval

tG, and the biasing potential at time t is given by

VG(S(x), t) =
∑

t′=tG,2tG,3tG,...

w · exp
[

(S(x)− st′)
2

2 · δs2
]

(XII.7)

where w and δs are the height and the width of the Gaussians, and st = S(x(t)) is the value

of the collective variable at time t. In the course of time, this potential is filling the minima

on the free energy surface, i.e. the biased energy surface (sum of the Gaussians and the

free energy) as a function of the collective variable(s) S is becoming constant. So, the MD

protocol exhibits a kind of memory via the changing potential-energy function – a concept

that was introduced earlier under the name “local elevation” (Huber et al., J. Comp. Aided

Molec. Design 1994).

This approach can be exploited to explore new reaction pathways and accelerate rare
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FIG. 41: Metadynamics.

events, and also to estimate the free energies efficiently. The features of metadynamics:

• The system escapes a local free energy minimum through the lowest free-energy saddle

point.

• The dynamics continues, and all the free-energy profile is filled with Gaussians. At

the end, the sum of the Gaussians provides the negative of the free energy. This latter

statement is correct if the dynamics along S is much slower than the dynamics along

the remaining (transversal) degrees of freedom.

The crucial point of the method is to identify the variables that are of interest and that

are difficult to sample, since the stable minima in the space spanned by these variables

are separated by barriers that cannot be cleared in the available simulation time. These

variables S(x) are functions of the coordinates of the system; practical applications allow

the definition of up to three such variables, and the choice depend on the process being

studied. We can think for instance of the principal modes of motion obtained with principal

component analysis (covariance analysis, essential dynamics). However, the choice of S may

be far from trivial.

The metadynamics method may be also classified as a variant of the adaptive umbrella

sampling approach.

D. Locally enhanced sampling

Quotation from the Amber website, by David A. Case (www.ambermd.org).
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Locally enhanced sampling (LES) is a mean-field technique which allows selective appli-

cation of additional computational effort to a portion of the system, increasing the sampling

of the region of interest (Elber & Karplus, 1990). The enhanced sampling is achieved by

replacing the region(s) of interest with multiple copies. These copies do not interact with

each other, and interact with the rest of the system in an average way. This average is an

average force or energy from all of the individual copy contributions, not one force or energy

from an average conformation of the copies.18 A key feature is that the energy function is

modified such that the energy is identical to that of the original system when all LES copies

have the same coordinates.

During the simulation, the copies are free to move apart and explore different regions

of conformational space, thereby increasing the statistical sampling. This means that one

can obtain multiple trajectories for the region of interest while carrying out only a single

simulation. If the LES region is a small part of the system (such as a peptide in solution, or

a loop in a protein), then the additional computational effort from the added LES particles

will be a small percentage of the total number of atoms, and the multiple trajectories will

be obtained with a small additional computational effort.

Perhaps the most useful feature of the LES method is that it has been shown that

the barriers to conformational transitions in a LES system are reduced as compared to

the original system, resulting in more frequent conformational changes (Roitberg & Elber,

1991). This can be rationalized with a simple model: Imagine a protein side chain that

has been replaced with 2 copies. At finite temperatures, these copies will have different

conformations. Now consider the interaction of another part of the system with this region

– previously, steric conflicts or other unfavorable interactions may have created high barriers.

Now, however, the rest of the system sees each of these 2 copies with a scaling factor of 1
2
.

Whereas one copy is in an unfavorable conformation, the other may not be, and the effective

barrier with a distribution of copies is lower than with a single copy (as in normal MD).

Another way to consider the LES copies is that they represent an intermediate state

between a normal simulation where each point in time represents a single structure, and a

purely continuum model where the probability distribution of regions of interest are repre-

18 Note the difference! The forces from all copies are calculated and their average is then taken. No average

structure or the like is calculated.
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sented by a continuous function. The atoms outside a LES region interact with that region

as if it were (in the limit of many copies) a continuum, with a probability scaling given to

all interactions. Therefore, the most unfavorable interactions are reduced in magnitude as

compared to the original system.

Another major advantage of LES over alternate methods to reduce barriers or improve

sampling is that it is compatible with current state-of-the-art simulation techniques such as

molecular dynamics in explicit aqueous solvation (problems for techniques such as Monte

Carlo or genetic algorithms) and the particle–mesh Ewald technique for accurate treatment

of long-range electrostatic interactions. Higher temperatures can increase rates of barrier

crossing, but one is then faced with issues related to solvent behavior at higher tempera-

tures, maintaining proper densities and pressures, stability of the molecule of interest at the

elevated temperature, and so on. LES gives more direct control over which regions should

be enhanced, and also provides other benefits such as improvement in statistical sampling

discussed above.
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XIII. OTHER GENERATORS OF CONFIGURATIONS

A. MD simulation of hard bodies

The first MD simulation of a system in the condensed phase used the model of hard

spheres (Alder & Wainwright, J. Chem. Phys. 1957). Representing a first step from the

ideal gas model towards realistic molecules, this model has been a valuable tool above all in

statistical thermodynamics, deriving e.g. equations of state and virial expansions.

1. The hard-sphere potential

The potential is a pairwise one. The potential energy of a system of two hard spheres

with radius R equals zero for distances larger than the diameter of the spheres and rising

above all bounds (infinity) for shorter distances when the spheres overlap:

V (r) =











0 if r > 2R

+∞ otherwise
(XIII.1)

The potential is discontinuous and thus not differentiable, and this is different from the

potentials typically used in biomolecular simulation.

FIG. 42: The potentials of hard spheres, square well and Lennard-Jones.

If we wished to proceed further towards realistic description, however preserving the

simplicity of the interaction model, we would probably opt for the so-called square well

model, which features a region of negative potential energy (corresponding to attraction)
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starting at the contact distance 2R. Clearly, such an approximation goes in the direction of

the Lennard-Jones potential, which describes the behavior of nonpolar fluid very well.19

Hard-convex-body potential is another extension used in statistical thermodynamics.

Still, the potential energy function is discontious – zero if the bodies do not intersect and

infinity if they do. The enhancement is represented by the shape of the bodies, which is

not spherical anymore but rather ellipsoidal or the like. Such a shape may better describe

diatomic molecules for instance.

2. Simulation protocol

As stated in the previous chapters a few times, the integration of Newton’s equations

motion requires the used (pair) potential to be continuous and possibly smooth (i.e. with

continuous first derivative). If this is not the case, then the atoms will experience sudden

‘jumps’ in forces, leading to unstable simulations and wrong sampling of the configuration

space, see Fig. 43.

FIG. 43: If we attempted to simulate hard spheres with an integrator, we would see an explosion

caused by a sudden occurence of an overlap of atoms, much the same as in the case of a simulation

with continuous potential and a way too large time step (center). However, with hard spheres, an

arbitrarily short time step would be still too long.

The situation with the hard-body potential is even worse, as there is an infinitely high

jump of potential energy at the edge of the body (particle). What would a simulation of

hard spheres with (say) the Verlet integrator look like? There are no forces in any initial

configuration, and so the spheres move with their initial velocities until, all of a sudden, two

spheres start to overlap. At that very moment, the energy and the forces are infinite, and

the simulation crashes.

19 This is probably the reason why physical chemists like argon so much. The simple LJ potential describes

argon extremely accurately.
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The simulation protocol for a system of particles interacting with a hard-body potential

has to be adjusted to the discontinous character of this potential. The spheres (bodies)

move along straight lines between collisions, which are perfectly elastic and instantaneous.

A simulation of such a system proceeds as follows:

1. Identify the next pair of spheres (bodies) to collide, and calculate when this collision

will occur.

2. Calculate the positions of all spheres at the collision time, using the principle of con-

servation of linear momentum and kinetic energy.

3. Determine the new velocities of the two spheres after collision.

4. Repeat from start.

Obviously, no further approximations are involved in this protocol, and a simulation will

be exact within the model of hard spheres. (This is different with continuous potentials,

where approximations have to be made, usually via a stepwise integration of the equations

of motion.)

The potential energy is constant (zero) throughout the simulation. Thus, the conservation

of total energy forces the conservation of kinetic energy, meaning that in any simulation with

hard spheres, the temperature is actually constant.

B. Monte Carlo approach

In many (if not most) of the applications of molecular dynamics, the main objective is

not to study how the molecular system evolves in time, but rather to generate as many

configurations of the system of possible in order to sample the configuration space and

estimate some thermodynamic quantites. MD is not the only possibility to do this, and we

are actually free to design a method to generate the needed configurations as long as these

sample the correct (e.g. canonical ensemble).

Another possibility are the Monte Carlo methods (MC). Actually, an MC technique was

the first technique used to perform a computer simulation of a molecular system. The not-

too-chemically sounding name comes from the crucial role that random numbers play in the

MC algorithm.
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1. Monte Carlo integration

As mentioned above, one of the major goals if molecular simulations is to calculate

the thermodynamic properties. Formally, this is done by the integration over the entire

configuration space. Now then, how could we use a method based on randomness to integrate

a function?

FIG. 44: Integration with the trapezoidal rule (left) and with Monte Carlo (right).

An example is shown in Fig. 44 – the task is to estimate the area under the curve, or

to integrate the function. This could be done by the application of the trapezium rule.

However, this method (as well as all the other commonly used ones) comes into trouble if

we have to integrate a function of many variables, as is always the case in the studies of

molecular systems. Here, we can make use of an alternative idea: Generate N randomly

placed points within a rectangle, and count how many points (n) lie under the curve. Then,

the ratio n/N approximates the ratio of area under the curve to the area of the rectangle.20

Importantly, it is straightforward to extend this idea to a problem in many dimensions –

and we can make use of this in studies of molecular systems. Conveniently, the integration

will be made even more straightforward if we are able to generate the configurations with the

right probability, i.e. sampling the correct thermodynamic (e.g. canonical) ensemble. Such

importance sampling will make it possible to average the thermodynamics quantity trivially

over the ensemble of generated configurations.

20 Apply the Monte Carlo idea to calculate π as follows: Generate pairs of random number between 0 and

1 (x, y). Count the pairs for which x2 + y2 < 1, i.e. the point (x, y) lies within the circle centered at (0,0)

with a radius of 1. The ratio of this number to the total number of pairs approximates the value of π/4.
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2. Metropolis’ method

A typical MC simulation of a molecular system generates a sequence of configurations

in an iterative way – in every iteration, one configuration is produced. Usually, a new

configuration is constructed from the current one by randomly shifting a single randomly

chosen atom (or, in general, particle). In practice, the new set of Cartesian coordinates is

calculated with random numbers ξ ∈ (0, 1) as

xnew = x+ (2ξ − 1) · δr

ynew = y + (2ξ − 1) · δr (XIII.2)

znew = z + (2ξ − 1) · δr

where δr is the maximum allowed displacement.

Then, a test is performed to inspect if this configuration shall be accepted or not. To

do this, potential energy of the entire molecular system is calculated. The calculation can

be optimized by realizing that only a small part of the system (a single particle) has moved

since the previous iteration. Consequently, only a small part of the usually considered pair

interactions changes.

The acceptance probability of the trial configuration is obtained from the current potential

energy U and that of the trial configuration Unew as

P =











1 if Unew < U

exp
[

−Unew−U
kBT

]

otherwise
(XIII.3)

For P < 1, a (pseudo)random number is drawn from the interval (0,1). The trial config-

uration is accepted if P is larger than this random number. If it is not the case, the trial

configuration is discarded and a new one is generated by modifying the coordinates of the

current configuration.

The percentage of accepted configurations (among all the generated) is governed by the

maximum allowed displacement δr, which is an adjustable parameter. It is usually chosen so

that 1
3
to 1

2
of all configurations are accepted. Such acceptance ratio was shown to lead to the

most efficient sampling of the configuration space. If δr is too small, then most configurations

are accepted though, but the configurations are very similar and the sampling is slow. On

the other hand, if δr is too large, then too many trial configurations are rejected. Often,
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δr is adjusted in the course of the simulation in order to reach a certain target acceptance

ratio.

There are some modifications possible to the described recipe. Instead of selecting the

atom to move randomly, it is possible to move the atoms sequentially, in a preset order. This

way, one less random number per iteration has to be obtained. Alternatively, several atoms

can be moved at once, instead of a single atom. With an appropriate maximum allowed

displacement, this procedure may sample the configuration space very efficiently.

3. Intermezzo: generators of pseudorandom numbers

A Monte Carlo algorithm requires several random numbers to be obtained in every it-

eration, and since many steps have to be performed in a typical simulation (where many

may mean millions or so), it is necessary to have a reliable and efficient source of random

numbers. It would be most convenient to be able to ‘calculate’ random numbers in some

way. This is actually a paradoxical requirement: computers are intrinsically deterministic

devices, which are designed to deliver results that are determined by the input.

However, there are ways to generate sequences of ‘pseudorandom’ numbers, which are

actually not random in the true meaning of the word. Still, they are independent enough of

each other and have the right statistical properties, which makes them useful for MC.

Most commonly used are the linear congruential generators, which produce sequences of

pseudorandom numbers. A following number in the sequence ξi+1 is obtained by taking the

previous number ξi, multiplying by a constant (a), adding another constant (b) and taking

the remainder when dividing by yet another constant (m). Obviously, an initial value (‘seed’)

has to be given to the generator (the system time on the computer is often used). If ‘real’

values are requested rather than integers, the obtained number is divided by the modulus

m (to get to the interval (0,1)).

ξ0 = seed

ξi+1 = (a · ξi + b) mod m (XIII.4)

Here, it is essential to choose ‘good’ values of a, b and m. If they are chosen carefully, then

the generator will produce all possible values 0, . . . ,m − 1 and the sequence does not start

to repeat itself until m numbers have been generated. If they are not, the sequence starts
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to repeat much earlier, and there is not much randomness in there at all. A disadvantage of

these generators is that the generated points in an N -dimensional space are not distributed

uniformly in the space but rather lie on at most N
√
m (N − 1)-dimensional planes (i.e. on

straight lines if we have a 2D space). If the generator is poor, the number of these planes is

much smaller than N
√
m.21

FIG. 45: A bad and a good generator of pseudorandom numbers. Each point (rnd1,rnd2) is a pair

of consecutive numbers in the generated sequence.

In spite of the mentioned disadvantages, linear congruential generators are often used in

MC simulations because of their extreme simplicity and thus computational efficiency. The

classes of pseudorandom number generators of higher quality include the linear feedback

shift register generators (LFSR) or Mersenne twister (MT). LFSR uses several bits from the

current number to generate a new sequence of bits constituting a newly generated number,

and it does not suffer from the cumulation of the generated numbers on hyperplanes.

MT is the current state of the art among generators and outperforms the previously men-

tioned e.g. by an extremely long period of 219937 − 1 and no cumulation of numbers on

hyperplanes in spaces with up to 623 dimensions. In a modified form, it is even suitable for

cryptographic applications.

Alternative generators – from Wikipedia: In Unix-like operating systems (with Linux

being the first), /dev/random (or /dev/urandom) is a special file that serves as a random

number generator or as a pseudorandom number generator. It allows access to environmental

noise collected from device drivers and other sources.

21 An example of such generator is randu: ξ0 is odd and ξi+1 = 65539 · ξi mod 231. All generated values

are odd, the period is only 229 and the points (ξi, ξi+1, ξi+2) cumulate on as few as 15 planes in space.
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4. Monte Carlo simulation of molecules

The easiest implementation of MC is for systems of monoatomic molecules, because it is

only necessary to deal with the translational degrees of freedom. In polyatomic molecules,

the implementation is more complex, and the situation is most difficult if there is much

conformational flexibility in the molecules. Then, the internal degrees of freedom have to be

free to vary, but this may often lead to an overlap of atoms accompanied by energy growing

steeply. The ratio of acceptance of configurations would be extremely low.

It is still quite easy to simulate rigid molecules with MC. Apart from their position in

space, their orientation has to be varied. This is accomplished by a rotation along one of

the Cartesian axes (x, y or z) by a randomly chosen angle. There is some trigonometry to

do to obtain the position of the molecule in the trial configuration.

5. Monte Carlo simulation of polymers

Many approximative models of polymers have been developed that are suitable for MC

simulation. A class of convenient representations of polymers is that of a chain of monomer

units, which are elementary particles (without further internal structure).

Lattice models are very simple and thus useful for very efficient studies of polymers. Here,

monomer units connected with a bond can occupy neighboring lattice points in a cubic or

tetrahedral lattice (Fig. 46). The used expressions for potential energy are usually very

FIG. 46: Monte Carlo of a polymer – cubic (left) and diamond-like (right) lattices.

simple, which is partially forced by the simple structure of the model but also required to

evaluate the energy rapidly and to sample the configuration space efficiently. An example

of a more realistic and thus more complex lattice model is the ‘bond fluctuation’ model,

where the lattice is finer-grained with respect to the bond length and the bonds between
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the particles (which actually stand for several covalent bonds each) are not constrained to

lie on the lattice edges (Fig. 47).

FIG. 47: Monte Carlo of a polymer – the bond fluctuation model. A single ‘effective’ bond in the

model (right) consist of three covalent bonds along the chain of the real polymer molecule (left).

The simplest type of simulation of such a polmer chain is a random walk. Here, the chain

grows in a random direction until the desired length is achieved. The first implementation

does not consider the excluded volume of the previous segments, and the chain is free to cross

itself. It is possible to evaluate various structural properties with this model, by averaging

the results over many ‘simulations.’ For instance, the end-to-end distance Rn and the radius

of gyration sn are obtained for a chain composed of n bonds with length l as

〈

R2
n

〉

0
= n · l2

〈

s2
〉

0
=
〈

R2
n

〉

/ 6 (XIII.5)

While the missing description of excluded volume may seem to be a serious flaw at the first

sight, this may not be always the case. In the so-called theta state, the effects of excluded

volume and attractive interactions within the polymer and between the polymer and the

solvent exactly cancel (also, the second virial coefficient vanishes), and the expressions de-

rived with the simple random walk are actually valid. (The calculated parameters are often

designated with the subscript ‘0’).

The excluded volume can be taken into account by not allowing the chain to extend to

the already occupied lattice points – self-avoiding walk (Fig. 48). This model was used

to generate all possible configurations of a polymer of given length, in order to evaluate

the partition function leading to all thermodynamic properties. The ‘potential energy’ may

be calculated with a reasonable model of interaction of the nearby monomer units. Also,
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it is possible to consider copolymers consisting of two different types of monomer units.

Extreme attention has been paid to the structural properties again; an example result is the

end-to-end distance in a limit of large number of elements of

〈

R2
n

〉

≈ n1.18 · l2 (XIII.6)

FIG. 48: Monte Carlo of a polymer – self-avoiding walk.

While it need to be difficult to generate a configuration of the polymer chain, it can be

nearly impossible to modify this configuration e.g. with a MC engine, especially for densely

packed polymers. A widely used algorithm in MC simulations, which is not limited to lattice

models, is the slithering snake model. Here, one end of the polymer chain is randomly chosen

as the head, and an attempt is made to connect a new monomer unit to it. If the attempt

is successful, one monomer is removed from the other end. The whole procedure is then

repeated.

A natural way to improve the lattice models is to leave the lattice. The simplest of such

‘continuous’ polymer models consists of a string of connected beads (particles), which are

freely connected and interacting with each other with a sperically symmetric potential (like

Lennard-Jones). Note that the beads do not generally correspond to monomer units and so

the links are not the chemical bonds between monomers. The links may be either of fixed

length or free to vary with a harmonic potential.

The most unrealistic property of such a model is continuous variation of link angles.

The freely rotating chain model improves this behavior by holding the link angles fixed

while allowing free rotation about the links (i.e. continuous variation of ‘dihedral angles’).

Obviously, this will affect the overall structure of the polymer chain compared to the freely

connected one; the characteristic ratio

Cn =
〈R2

n〉
n · l2 (XIII.7)
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indicating the extension of the chain will converge to the value of

C∞ =
1− cos θ

1 + cos θ
(XIII.8)

with bond angle θ. For instance, C∞ ≈ 2 for a tetrahedral bond angle of 109◦.

The rotational isomeric state model (RIS) by Flory (1969) improves the description by

allowing every link to adopt only one of a defined set of rotational states (i.e. dihedral

angles). These states usually correspond to minima of potential energy, for instance the

trans, gauche(+) and gauche(-) conformations for a polyalkane chain. An elegant feature of

the model is that it uses various matrices to described conformation-dependent properties.

RIS is the best known one of the ‘approximative’ ways to describe polymer chains. It can

be conveniently combined with MC simulation to estimate a wide range of properties. In

such a simulation, conformations of the chain are generated with probability distributions

corresponding to their statistical weights, which are a component of the RIS model (in a

matrix form). With uab being the statistical weight of dihedral state b following a link in the

dihedral state a, the matrix of statistical weights for an example of polyalkane chain may

look like this:

U ≡











utt utg+ utg−

ug+t ug+g+ ug+g−

ug−t ug−g+ ug−g−











=











1.00 0.54 0.54

1.00 0.54 0.05

1.00 0.05 0.54











(XIII.9)

Starting on one end of the chain, a conformation is generated by calculating the dihedral

angles sequentially, until the whole chain is done. The probability of each dihedral angle

is determined by the a priori probabilities of the dihedral states and on the state of the

previous dihedral angle; a Monte Carlo engine is then used to select one of the values.

In a typical study, a large number of such chain will be grown, and the properties of

interested will be calculated for each of them and averaged. The RIS-MC approach can be

used to estimate properties like pair correlation functions (for atoms within the polymer

chain), scattering functions and the force–elongation profiles.

Black-and-white figures were reprinted from Leach, Molecular Modelling.
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XIV. STRUCTURE OF PROTEINS AND DRUG DESIGN

A. Basic principles of protein structure

The structure of protein molecules is not at all regular but rather far more complex.

However, there are structural patterns that occur frequently. These secondary structure

elements include alpha-helix and beta-strand as well as some more rarely occurring kinds of

helices and several kinds of loops and turns, which exhibit certain structural patterns in spite

of their generally less regular composition. These elementary structures are held together

by means of hydrogen bonds. Tertiary structure is the relative orientation of secondary

structural patterns, like e.g. beta barrel. Quaternary structure constitutes of the way the

individual subunits of the protein – separated molecules – combine to form the native, active

state of a multi-subunit protein.

The structure of a polypeptide chain can be characterized by the dihedral angles along

the backbone. Ignoring the usually planar configuration on the amide bond, there are

two dihedral angles per amino acid: φ (along the N–Cα bond) and ψ (along Cα–C). The

Ramachandran plot (1963) is a way to record this structure in a two-dimensional diagram

(Fig. 49). In a structural analysis of a protein, any amino acids lying outside of the common

regions in the Ramachandran plot would be paid special attention.

FIG. 49: Ramachandran plot obtained by an analysis of a protein databank.

Quite independently of the secondary structure elements, it is a general rule that the

surface of soluble (globular) proteins is formed by polar and charged amino acids, whereas

non-polar AAs (Trp, Phe, Leu, Ile, Val) tend to cumulate in the interior of the protein.

This observation is said to be the consequence of the hydrophobic effect, which is one of

the most important factors driving the stability of a protein. As a phenomenon, it still not
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completely resolved, yet it is generally explained with entropic considerations. When the

protein is folding, the free surface of the (bulky) non-polar AA side chains is decreasing.

Thus, some of the water molecules that had previously formed a kind of cage around these

AAs are being freed to leave to the bulk water (Fig. 50), bringing on an increase of entropy.

This contribution is believed to dominate the entire free energy of the process of creation of

the native structure of the protein – the folding of the protein.

FIG. 50: The hydrophobic effect.

Another large group is the trans-membrane proteins. Typically, non-polar (hydrophobic)

AA side chains are located on the surface of the protein in the membrane-spanning region,

in order to match the hydrophobic character of the environment in the interior of the lipid

membrane. On the other hand, charged and polar residues will be found in the parts of the

protein exposed to the aqueous solution. The resolution of structure of membrane proteins

is generally a very hard problem due to the extreme difficulties with crystallization of such

proteins.

B. Comparative/homology modeling

Comparative modeling is a method to obtain a reasonable model of protein structure. The

3D structure is built on the basis of comparison of the sequence to that of (a) certain other

(homologous) protein(s). Here, we understand the phenomenon of ‘homology’ as structural

similarity in general, although homologous proteins are defined as such that have a common

evolutionary origin. The fundamental underlying idea is that the 3D structure of proteins

with similar sequence is similar. Expressed more strongly: even though the AA sequence

of homo-logous proteins differs, sometimes by a seemingly large margin, their 3D structures

may still be nearly identical. Obviously, this need not necessarily be the case, yet still it

works often.

The procedure of creating a homology model is as follows:
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FIG. 51: The 3D structure and the AA sequence of three homologous proteins.

1. Identify a template – i.e. a protein that we consider homologous to the protein that

we want to determine the structure of. There may be more than one template.

2. Produce the alignment of the sequences. Literally, the two (or more) sequences are to

be laid next to each other so that their ‘match’ is as good as possible.

3. Identify which regions are structurally conserved between/among the sequences, and

the regions of variable structure.

4. Create a model (coordinates) of the conserved region – ‘core’ – for the unknown struc-

ture, based on the known structure of the core of the template protein(s).

5. Generate the structure of the variable region(s) in the unknown structure. These are

often fragments with no regular secondary structure, like various loops.

6. Handle the AA side chains.

7. We are done. The structure should be verified and possibly further refined with e.g.

molecular mechanics.

1. Identification of the template

The basic assumption of the entire procedure is the existence of a suitable template – a

protein that we expect to be structurally very similar to the unknown one. Having only the

AA sequence as input, we have to rely on some kind of comparison of the sequence with a

database of proteins with known 3D structure. Thus, we will take one or more proteins with

certain sequence similarity with the unknown.
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Also, it may be of interest to look for a possible function of an uncharacterized protein,

for which only the sequence is known (for instance derived from a DNA sequence). In such a

case, we would look for fragments of sequences that are strongly conserved in certain protein

families – these are typically AA side chains binding a cofactor or catalytic sites.

2. Alignment of the sequences

The procedure of aligning the sequences along each other in order to obtain a best-

possible match may look simple at the first sight though, but actually it is a crucial and

highly non-trivial step in the development of a structural model. Several algorithms are

available for alignment, and the choice of the algorithm is one of the tasks that need to be

performed, together with the choice of the scoring method and the potential application of

gap penalties.

The many algorithms are generally based on the so-called dynamic programming al-

gorithm (Needleman & Wunsch, 1970). The available possibilities are FASTA, Smith-

Waterman and BLASTP (which does not handle gaps). In the words of Leach, FASTA

works like this (see Fig. 52):

A locate regions of identity

B scan these regions using a scoring matrix and save the best ones

C optimally join initial regions to give a single alignment

D recalculate an optimized alignment centered around the highest scoring initial region

FIG. 52: Creating an alignment with FASTA.
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3. Scoring of the alignment

A scoring method is used to characterize the quality of alignment of the specific sequences

with a single number. In general, if an AA is identical in the aligned sequences, the contri-

bution to the score is high, while it may be smaller if the AAs are chemically similar but not

identical (conservative substitution), and it should be unfavorable if there are very different

AAs aligned. There are several possibilities to perform the scoring:

• Identity – only identical AAs have favorable score.

• Genetic code – the score is given by the number of nucleobases in DNA/RNA that are

needed to be changed to change one of the aligned AAs to the other.

• Chemical similarity – not only identical AAs in the aligned sequences will score favor-

ably, but it is still OK (i.e. the score is favorable) if physico-chemically ‘similar’ AAs

are aligned. That is, if Glu is in one sequence and Asp in the other, or two different

non-polar aliphatic AAs, etc.

• Observed substitutions – this is based on the analysis of protein databases and the

frequency of mutations of AAs in the alignment of sequences in these databases.

The schemes based on observed substitutions are considered to be the best choice to

score alignments of sequences. An early approach is the ‘Percentage of Acceptable point

Mutations’ (PAM, Dayhoff 1978) which give the probability of mutation of an AA to another

within a certain interval of evolutionary time. Varying this time, the scoring method would

find either short runs of highly conserved AAs or longer parts of the sequence with weaker

similarity. Another approach is to base the scoring matrices on alignments of 3D structures

rather than sequences alone; JO matrices are an example (Johnson & Overington 1993).

These matrices have the potential to render the similarities of 3D structures of different

sequences more sensitively – even if the sequences are formally less similar than required

with other approaches. Still, there is no ultimate scoring approach that performs best for

all possible alignment problems, and the selection of the scoring matrix remains non-trivial.

Further, one has to decide if a global alignment shall be made (with the whole length of the

sequences) or rather a local alignment, with just some fragments of the sequences; in such

case, the template(s) need not be of the same length as the unknown protein.
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Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

A R N D C Q E G H I L K M F P S T W Y V

Ala A 13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9

Arg R 3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2

Asn N 4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3

Asp D 5 3 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3

Cys C 2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2

Gln Q 3 5 5 6 1 10 7 3 8 2 3 5 3 1 4 3 3 1 2 2

Glu E 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3

Gly G 12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7

His H 2 5 5 4 2 7 4 2 15 2 2 3 2 2 3 3 2 2 3 2

Ile I 3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9

Leu L 6 4 4 3 2 6 4 3 5 15 34 4 20 13 5 4 6 6 7 13

Lys K 6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5

Met M 1 1 1 1 0 1 1 1 1 2 3 2 7 2 1 1 1 1 1 2

Phe F 2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3

Pro P 7 5 5 4 3 5 4 5 5 3 3 4 3 2 19 6 5 1 2 4

Ser S 9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6

Thr T 8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6

Trp W 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 55 1 0

Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2

Val V 7 4 4 4 4 4 4 5 4 15 10 4 10 5 5 5 7 2 4 17

TABLE I: Mutation probability matrix for 250 PAM. Each ij element give the probability (in %)

that the amino acid in column j will have mutated to that in row i by the end of the period of 250

PAM. (Based on Dayhoff 1978 and Leach.)

A usual component of alignment algorithms is the gap penalty. It is allowed that the

alignment of the sequences is discontinuous though, i.e. one or several amino acids is (are)

missing in one of the sequences (or, looking from the other side, there is (are) (an) extra

amino acid(s) in the other sequence(s)), but such a situation is penalized by an unfavorable

contribution to the score of such an alignment. The simplest possibility is to assign each of

such indels (insertions/deletions) a constant negative contribution. It is more common to

have a penalty of the form u + v · k for a gap of length k AAs, with the opening penalty u

being larger than the extension penalty v. Even more sophisticated are gap penalty schemes

that take into account if the gap lies within a secondary structure element (alpha helix, beta

sheet) or even within an active center of the protein – in such cases, the penalty would be

larger than if the gap is e.g. in solvent-exposed loops or other regions on the protein surface.
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4. Structurally conserved/variable regions

As soon as the alignment is available, it has to be determined which regions of the sequence

will have the same 3D structure in the unknown protein as in the template(s) – conserved

regions (CR) – and the variable regions (VR), which will require special treatment in the

design of the 3D structure. This is more feasible if more than one template is available. CRs

are usually secondary-structure elements (alpha helices, beta sheets) and sites of binding of

cofactors or substrates. CRs of such character can be recognized even if only one template

is used.

If more than one template is used, then the templates are first aligned with each other.

The CRs are identified in the group of templates, and the alignment of the unknown protein

is performed after that.

5. Create the 3D structural model

The most straightforward part here is to generate the coordinates of the main-chain atoms

in the CRs – this is done simply by using the structure of the template(s). As for the side

chains, the situation is still easy if the AAs are identical in the unknown protein, or if they

are at least similar. If the difference of individual AAs in the CRs is more significant, then

a kind of systematic approach may be used to obtain a reasonable conformation of the side

chain – for instance, rotamer libraries may be used to generate the possible (most favorable)

conformations of the side chain, from which the most appropriate for the specific case may

be chosen.

Obviously, it is more difficult to create a good structural model for the VRs, which

often correspond e.g. to the solvent-exposed loops on the surface of the protein. In those

favorable cases where the sequence of the unknown protein is very similar to that in (one

of) the template(s), then the VR from the template may be copied. Is this not the case,

the particular sequence of AAs in the possible loop together with an additional couple of

AAs on both ends of the loop may be sought among all available proteins (and not only

the templates). It is quite likely here that the perfect match would not be achieved and

considerable effort in application of rotamer libraries would be necessary to find a good

model for the structure of the VR.
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Databases of structure from comparative modeling – ModBase, SwissModel Repository.

Automated web-based comparative modeling – SwissModel via the ExPASy web server,

What If via the EMBL servers.

7. Evaluation and refinement of the generated structure

The structure of protein molecules on atomic level has been the focus of research of a

huge number of experts in the recent decades, and a vast amount of knowledge has been

accumulated on this topic. Thus, the fundamental principles of protein structure are known

and quite well defined, providing us with the criteria that may be used to assess if the

generated 3D structure of the unknown protein can be considered reasonable. The criteria

may include:

• Conformation of the main chain in expected regions of the Ramachandran plot

• Planar peptide bonds

• Conformation of the side chains in accordance with those previously observed (rotamer

library)

• Polar groups should be hydrogen bonded to a suitable partner if they are buried in

the interior of the protein

• There should be a reasonable match between the hydrophilic and hydrophobic side

chains (and possibly H-bonding between polar side chains and the backbone)

• No unfavorable atom–atom contacts

• No empty space (hole) in the interior of the structure. (That would be an extremely

unfavorable situation.)

There are programs available to perform such an analysis – Procheck, 3D-Profiler. The out-

put of the analysis may be not only a single determinant describing the quality of the overall

3D structure, but it can even tell which parts of the structure have been modeled proba-

bly correctly and which are suspicious or unlikely, based on the empiric criteria mentioned

above.
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As soon as such a simple analysis of the 3D structure has been performed and any revealed

problems have been resolved, the prepared structure may be subject to further refinement.

This would include energy minimization with molecular mechanics, and probably also molec-

ular dynamics. It may be of advantage to apply constraints to the coordinates of the CRs

at least at the start of the refinement, while the VRs are free to move. These constraints

would be (gradually) decreased/removed during the process. Also, it is advisable to consider

the solvent in these calculations (implicit/explicit, maybe PBC), and even crystallographic

water molecules in the CRs of the templates can be introduced.

C. Molecular modeling in the drug design

One of the most exquisite applications of molecular modeling in the broadest sense is to

construct new chemical compounds interacting in a defined way with natural materials –

usually proteins but also nucleic acids, carbohydrates etc. A typical example of a task in the

‘drug design’ is to find a potent inhibitor of an enzyme, which does not interact harmfully

with other substances in the organism. This example immediately illustrates the difficulties

in drug design – mentioning just the most important requirements: the drug (medicine, for

instance) has to be a potent inhibitor of the given enzyme, but it must not interact with

other enzymes (which might be lethal), it must not decompose too early (before reaching the

desired destination), and its metabolites must not be (too) toxic. To find a substance that

meets all of these criteria is a truly hard business, and an expensive one – it is no exception

that the costs to develop and test a single drug reach several hundred million euros. Although

the purely experimental methodologies in this area have improved largely in the recent 20

years, involving approaches like the high-throughput screening, the exceptional amount of

time and money needed to invest on the experimental side make this field an ideal target of

computational approaches.

1. Molecular docking

In this chapter, we will concentrate on a typical pharmacological problem – to find a

(small) molecule (ligand, guest, key) that would bind to a protein (receptor, host, lock) as

strongly and specifically as possible. Thus, it is necessary (1) to generate the structure of a
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complex of a known receptor (protein) and an up to this point unknown compound, and (2)

to evaluate this structure. A good news is that the binding site – binding pocket – is usually

known, as it is often the active or allosteric place of the protein that is to be inhibited.

Otherwise, there is bad news. The problem has many degrees of freedom – translation and

rotation of the ligand as well as its internal flexibility; the relaxation of protein structure

may be often neglected (although not always). A single molecule (or a small number of

molecules) can be docked manually, once the binding mode of a similar molecule is known.

It should be noted that even such a straightforward approach may fail, as even similar

molecules may sometimes bind in different ways (and with different strength).

There is a sequence of tasks to accomplish, fairly similar to that in the search for the

structure of a protein, indeed:

1. Take the compounds to test from somewhere – database of compounds, construction

from a database of moieties,. . .

2. For a selected compound, place the molecule in the binding site in the most favorable

way – orientation and conformation (if applicable – nearly always).

3. Evaluate the strength of the orientation. Accurate determination of binding free energy

is impossible, and so some kind of scoring is desired.

Various levels of approximation may be employed when searching for a molecule that

would fit a binding pocket. The simplest approach is to process a database of molecules

and consider each of them as rigid body; this would be attempted to fit into a rigid binding

pocket in the protein. This is the essence of the action of the Dock program, which first

creates a ‘negative image’ of the binding pocket as a unification of several spheres, and then

looks which molecule(s) would fit this shape best.

A natural expansion of this approach is to consider the flexibility of the ligand in some

way. To do so, it is possible to apply any means of exploring the configuration space of the

molecule – be it Monte Carlo, sometimes in conjunction with simulated annealing, simple

minimization of molecular dynamics. A simple (and thus robust) force field would be used

with any of these generators of configurations. Alternatively, a quite efficient approach is

the incremental construction of the ligand. Here, the ligand is partitioned into chemically

reasonable fragments; the first fragment is docked into the binding site in a usual way, and
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the other fragments are ‘grown’ consecutively. This provides a natural possibility to account

for the conformational flexibility of the molecule, regarding the relative orientation of the

individual fragments.

We can already see the problem of docking very well – not at all surprisingly, it is all

about sampling. There is no way to try to do MD for every candidate molecule, because

(1) MD takes much longer than we can afford having to process a lot of molecules, and (2)

MD could work probably only for quite rigid molecules and a binding pocket which does not

constrain the movement of the ligand, which is usually not the case. If our goal is to dock a

single, specific molecule, we can afford a particularly thorough search that would probably

involve MD, possibly with a king of biasing potentials. However, if we have to dock and

assess many candidate ligands, simpler approaches have to be chosen. The current state of

the art is to consider the flexibility of the ligands, while ways to describe the conformational

flexibility of the protein (on the level of side chains) are under development.

2. Scoring functions for docking

If we have a plenty of molecules to evaluate, we need an extraordinaly efficient way to

quantify the strength of the binding in order (1) to find the right binding mode of each

ligand, and (2) to compare the strength of binding of various ligands. So, the quantity of

interest here is the binding free energy. We know many methods to evaluate free energies,

but the problem is that these procedures are many orders of magnitude slower than required

for docking. What we need here is a simple additive function to approximate the binding

free energy, which would give a result rapidly, in a single step. Such scoring function would

have the form

∆Gbind = ∆Gsolvent +∆Gconf +∆Gint +∆Grot +∆Gt/r +∆Gvib (XIV.1)

∆Gsolvent covers the change of hydration effects during the binding reaction – the different

hydration of the isolated ligand and protein and that of the complex. ∆Gconf describes the

change of conformation of the ligand upon binding – the ‘deformation energy’; the shape of

the binding pocket may constrain the ligand to another conformation than what is favored

with a free ligand, and this costs energy. (The conformation of the protein is usually ignored,

or considered unchanged.) ∆Gint – the ‘interaction energy’ – a favorable contribution to free
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energy stemming from the specific interactions between the ligand and the protein. ∆Grot

is the loss of entropy (∆G = −T · ∆S) brought about by the frozen rotations around

single bonds within both the bound ligand and the protein. It is possible to approximate

this contribution as +RT log 3 = 0.7 kcal/mol per rotatable bond with three equienergetic

states (trans and 2x gauche). ∆Gt/r is the loss of translational and rotational entropy upon

association of two molecules, which is approximately constant for all ligands of similar size,

therefore it need not be considered when comparing the ligands. ∆Gvib should describe the

change of vibrational modes, which is difficult to estimate and is often ignored.

As a result, there is a kind of force field for the free energy of binding. The problem is

that in spite of its approximative character, this expression may be still computationally

too costly to evaluate for a huge number of ligands that is usually to be processed. For this

reason, the many ways proposed so far to estimate the contributions to the free energy are

usually very simple, looking over-simplified in comparison with molecular-mechanics force

fields. An illustrative example of such a simplified approach is the following equation:

∆G = ∆G0 + ∆GHbond ·
∑

Hbonds

f(R,α) + ∆Gionpair ·
∑

ionpairs

f ′(R,α)

+ ∆Glipo · Alipo +∆Grot ·Nrot (XIV.2)

where ∆G0 – a constant term; ∆GHbond corresponds to an ideal hydrogen bond, and f(R,α)

is a penalty function for a realistic hydrogen bond of lengthR and angle α; analogic quantities

(∆Gionpair and f
′(R,α)) apply for ionic contacts. ∆Glipo is the contribution from hydrophobic

interaction, considered as proportional to the area of the non-polar surface of the molecule

Alipo; Nrot is the number of rotatable bonds in the ligand that are being frozen upon binding,

contributing ∆Grot. (Böhm, 1994).

A number of similar functions followed this study. These involved for instance the par-

titioning of the surface areas of both the proteins and the ligand into polar and non-polar

regions, and assigning different parameters to the interactions of different kinds of regions

(polar-polar, polar-nonpolar, nonpolar-nonpolar). Also, statistical techniques were used to

derive the scoring function and the parameters. The problem is that these functions only

describe well those ligands that bind tightly to the protein. Modestly binding ligands, which

are of increasing interest in docking studies, are more poorly described by such functions.

A possibility to resolve this issue is the ‘consensus scoring’ – combining results from several

scoring functions, which was shown to perform better than any single scoring functions.
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In all studies aimed at the strength of binding expressed in terms of the binding free

energy, it must be constantly borne in mind that a change (error) of binding free energy

of 1.4 kcal/mol corresponds to a ten-fold in/decrease of equilibrium constant of binding.

In other words, as little as 4.2 kcal/mol of binding free energy lies between a micro- and

a nanomolar inhibitor of a protein, which is figuratively infinite difference. Therefore, the

requirements on the accuracy of the scoring function are actually quite big.

3. De novo design of ligands

While it is very often useful to search a database of molecules for a suitable ligand, there is

still a chance to miss the ‘ideal’ ligand simply because no such compound has been included

in the database. To avoid such a failure, it may be a better choice to construct the ligand

‘from scratch’ – without relying on the content of a database. There are two basic types

of the de novo design: In the ‘outside–in’ approach, the binding site is first analyzed and

tightly-binding ligand fragments are proposed. Then, they are connected together, possibly

using a database of molecular linkers, providing a molecular skeleton of the ligand, which

may be converted to an actual molecule. The ‘inside–out’ approach constitutes of ‘growing’

the ligand in the binding pocket, driven by a search algorithm with a scoring function.
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