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I Molecular mechanics 3

I. MOLECULAR MECHANICS: A CLASSICAL DESCRIPTION OF

MOLECULES

A. The conceptual and chemical basis

Chemical bonding is a genuinely quantum effect, which cannot be understood on the

grounds of classical physics. However, the solution of the Schrödinger equation is numerically

very expensive, and only small molecules can be treated quantum mechanically (up to ≈100
atoms). To be able to treat larger molecules, it is necessary to find further approximations.

Two fundamental simplifications often made in quantum chemistry are the so called

Born-Oppenheimer approximation (BOA) and the classical treatment of the nuclei. BOA

requires the electron motion to be much faster than the motion of the nuclei (atoms), so

that the electrons follow instantaneously the motion of the nuclei (being somehow ‘fixed’

to the nuclei).1 The second approximation is the neglect of nuclear quantum effects, like

tunneling effects (hydrogen) or zero-point vibrations.

With these simplifications, we have the picture of N electrons moving in the electrostatic

potential ofM nuclei. Then, we have to solve the Schrödinger equation for these N electrons,

which can be a formidable task. Or, vice versa, we have the M nuclei ‘sitting’ within the

‘sea’ of N electrons! What is a chemical bond in such a case? What causes the attraction

between two nuclei? In many cases, we do not have a large electron delocalization, thus there

is nothing like a sea of electrons (which is the case in a metal). In organic molecules, we

have two electrons in every bonding orbital, and that is how covalent bonding is explained.

The main idea behind the empirical models of chemical bond is that the strength of, say,

a C–H bond mediated through the bonding orbitals is similar in all C–H bonds. In other

words, we have a localized/local phenomenon to deal with.

So, how can we model a covalent bond? Is it possible to use simple springs to approximate

a bond? Consider the molecules H2, O2 or N2: If we model the interaction between two

atoms with a harmonic spring with the energy E(x) given as a function of the interatomic

1 This means, that the electrons never leave those orbitals that have been ’assigned’ to them in the electronic

ground state. But there are cases, when they ’leave’ these ground state orbitals, e.g. in high energy

collisions of nuclei. The electrons are excited then, a process not treated within the BO framework.
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I Molecular mechanics 4

distance x

E(x) =
1

2
k(x− x0)2 (I.1)

then there are two parameters k and x0. The values of these parameters may be derived

from spectroscopic measurements (bond length and vibrational frequency).2

In equilibrium, the force between the atoms

F (x) = −∂E(x)
∂x

= k(x− x0) (I.2)

vanishes for x = x0, thus x = x0 is the equilibrium geometry.

A diatomic molecule is a one-dimensional system, and thus it is equivalent to one particle

with mass m connected to a spring with spring constant k.3 The force on the particle is due

to Hooke’s law proportional to x− x0, and using Newton’s second law, we have

F = ma = m
d2x

dt2
= −k(x− x0) (I.3)

This ordinary differential equation has a solution

x(t)− x0 = c1 · sin
[√

k

m
t

]
+ c2 · cos

[√
k

m
t

]
(I.4)

The comparison with the known equation for harmonic motion

x(t) = c · sin (ωt) (I.5)

provides the relation of the frequency with the force constant k and mass m:

ω =

√
k

m
(I.6)

From another point of view, we obtain k directly from the second derivative of the energy:

k =
d2E(x)

dx2
(I.7)

This will hold in more complex molecules as well: the second derivatives of the energy with

respect to the atomic coordinates determine the frequencies of (harmonic) motion of the

atoms in a molecule.

2 In addition, there is also the information about the heat of formation. However, a harmonic spring does

not allow the bond to dissociate, therefore this information cannot be used until a “better” force field is

used, like a Morse potential.
3 The strict derivation introduces the reduced mass of the system.
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I Molecular mechanics 5

Therefore, we can parametrize a simple force field from experiment, once we know the

equilibrium distances and the vibrational frequencies. Alternatively, we can obtain these

values from quantum-chemical calculations.

Does this mean that we can take a protein molecule and put springs between all the

atoms? If yes, does every bond need different values of k and x0, because every bond is

in a different chemical environment? If this is the case, we would not obtain any benefit.

The essence of empirical modeling of chemical bonding is that the number of necessary

parameters is much smaller than the number of bonds. In other words, we will use several

(not many) “types” of chemical bonds with assigned parameters to represent any bond in

our molecules.

In the other extreme, can we assign (for instance) each C–H bond the same k and x0

value? It is not quite simple, but let us see:

1. Spectroscopy

Molecules consist of units/groups that have similar properties in every molecule. For

instance, every C–H has a length of r = 1.06–1.11 Å and a vibrational frequency ν̃ ≈
3100 cm−1, whatever its environment in the molecule is.

2. Thermochemistry

Molecular enthalpies of formation are approximately additive, so that:

CH4
∼= 4 C–H

C2H6
∼= 6 C–H + C–C

This illustrates that the C–H potential looks like the Morse potential for every C–H unit

in any chemical environment. The depth of the minimum is adjusted to fit the enthalpies of

formation.

3. The concept of atom type

These points indicate that bonds between atoms can be modeled by universal potentials,

if one tries to identify atom types in similar chemical environments (groups):
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FIG. 1:

• Hybridization: clearly, an sp3 carbon with four single bonds differs from an sp2 carbon

with a double bond or even an sp carbon with a triple bond. So, we need different

potentials for the C–C, C=C and C≡C bonds. Also, there will be various different

C atom types as well, like an aromatic carbon etc. Therefore, we introduce different

carbons and determine the parameters (k, x0) using some selected molecules which

are typical for this chemical environment. For carbon, we use C2H6, C2H4, C2H2 and

benzene to determine the parameters (k, x0) for these four different carbons.

• A carbon atom bonded to an oxygen is electron deficient and this directly affects its

bonding to other atoms. If we have a situation like in O=CH–C. . . , the C–C bond

will be affected and it is thus desirable to introduce an additional C type – a carbonyl

carbon, which uses different force constants for the adjacent C–C bond.

Biomolecular force fields typically use about 20 different C, 10 N and 5 O and H atom types.

4. Localization of the wavefunction

The quantum mechanical basis of these findings is that the electron wave function is

localized. It can be localized in a bond, or localized on a fragment of a molecule. Such a

fragments may constitute of functional groups or larger pieces like amino acids, DNA bases,

sugars etc. The localization is crucial in at least two respects:

• Definition of the atom types: Electron delocalization can lead to different properties

of the atomic fragments, like the different carbons in the carbonyl group, benzene etc.
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• Electrostatic interactions. In the force fields, atomic charges are defined — i.e. every

atom is assigned a point charge and interacts with other atoms according to Coulomb’s

law

EQQ ∝
Q1Q2

R12

(I.8)

These charges have to be estimated carefully, and it is very helpful to use the rule of

group neutrality : Every functional group or molecular fragment has an integer charge.

5. Bonded and non-bonded interactions

Then, there are two distinct types of interactions between atoms in an extended molecule:

• interactions mediated by, and resulting directly from the presence of a covalent bond

between the atoms. We usually put springs between the atoms and have to care

about bond and dihedral angles. With this treatment, we describe all the quantum-

mechanical phenomena like exchange and correlation using an effective potential be-

tween two atoms (like discussed above for a diatomic molecule).

• classical Coulomb interactions and van der Waals (vdW) forces between atoms, which

are both long-range. For bonded atoms, these interactions are already effectively

treated through the bonded parameters. These interactions are thus excluded between

atoms which are neighbors (up to the fourth neighbor).4

4 Usually, the non-bonded interaction between an atom and its third neighbor, so called 1–4 interaction, is

taken into account but scaled down by a multiplicative (“fudge”) factor.
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B. Determination of the non-bonding parameters: Coulomb and vdW forces

The Coulomb interaction consists of three contributions: the nucleus–nucleus repulsion

1

2

∑

ij

Zi · Zj

Rij

(I.9)

the nucleus–electron attraction,

−
∑

i

∫
Zi · ρ(r)
|Ri − r|

dr → −
∑

ij

Zi ·Qj

Rij

(I.10)

(the electron charge density ρ(r) → ∑
j Qj is approximated by the sum of atomic point

charges Qj),

and the classical (Hartree) electron–electron interaction term is approximated as interaction

of point charges sitting on the atoms

1

2

∫∫
ρ(r) · ρ(r′)
|r − r′| →

1

2

∑

ij

Qi ·Qj

Rij

(I.11)

If we define an effective atomic net charge as qi = −Qi+Zi, we can write the total Coulomb

energy as:

EQQ =
1

2

∑

ij

qi · qj
Rij

(I.12)

Thus, we have to determine the effective atomic charge for every atom type (or atom).5

This may be conveniently done by performing quantum-chemical calculations. Making use

of the localization of the wave function, we can calculate the typical molecular fragments

and try to determine the charges from there. These fragments are individual amino acid

residues for proteins and the bases (e.g. uracil in Fig. 2), sugars and phosphates for DNA.

In the uracil example, we can see that there are three different hydrogen atom types, one

nitrogen, one oxygen and two carbons. However, there are two issues associated with this

procedure:

First, atomic charges are difficult to define at all; there are several schemes to calculate

them and it might be difficult to judge which is the best. Nowadays, Mulliken charges are no

longer used because their drawbacks have become evident. A popular strategy is to use the

5 The term “atom type” is used with respect to bonded and vdW interaction. Usually, the atomic charges

must be determined for more specifically defined atoms.
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FIG. 2:

so-called potential-derived charges. Here, one calculates the electrostatic potential (ESP) of

the molecule at its surface (see Fig. 3) and then fits the atomic charges in order to reproduce

ESP for a set of points one the surface. The fitting constitutes in minimizing the error R:

R =
∑

i

(φi − φ0
i )

2 (I.13)

with φi being ESP induced by the system of point charges at the reference point i and φ0
i

being the ESP obtained previously in the quantum-chemical calculation.

FIG. 3:

Second, charges are calculated in the gas phase (i.e. for an isolated molecule), while the

electrostatic situation in an aqueous solution is different — molecules are more polar. As an

example, the water molecule has a dipole of about 1.8 D in the gas phase, while it is about

9
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2.4 D in solution. To account for that, charges may be taken to be larger than the gas phase

values. A widely used strategy has been to use a small basis sets in the QM calculations, as

it is known that such calculations overestimate molecular dipole moments.

These force fields use static atomic charges and, therefore, neglect the effects of polariza-

tion and charge transfer between the atoms. Presently, polarizable force fields are becoming

more and more popular. Here, atomic polarizability αi is assigned to every atom i. In a

linear response approach, an external electric field induces a dipole at the atom:

−→µi =
←→αi ·
−→
E (I.14)

Of course, the external electric field is generated by all other atoms present in the system.

This phenomenon will be discussed later on.

A further important non-bonded contribution is the repulsion driven by Pauli exclu-

sion principle. In contrast to the classical Coulomb interaction, it is of a purely quantum-

mechanical origin. Two electrons with same spin try to avoid a large spatial overlap. A

typical example is the interaction of two neutral, closed-shell systems like two He atoms.6 If

the electron densities of both He atoms start to overlap as in Fig. 4, the Pauli repulsion sets

in. This interaction is an exchange effect and decays exponentially with the spatial overlap.

Despite its pure quantum-mechanical character, we can model this effect conveniently by an

exponential term

Eex ∝ exp [−a ·Rij] (I.15)

As we will see later, the exponential decay is not a computationally efficient model, and

most empirical force fields use a R−12 decay.

FIG. 4:

6 . . . being the crudest approximation of two benzene molecules :-)
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The Pauli repulsion relates to the motion of electrons with the same spin, on short

intermolecular distances. In addition, we also have a correlation of electrons irrespective of

their spin, which remains even on longer distances. Two electrons repel each other due to

the Coulomb interaction, trying to move apart from each other as far as possible. Consider

now two atomic fragments with no overlap as in Fig. 5. Due to the zero-point energy, no

quantum particle is ever at rest. If an electron in the neutral fragment A fluctuates in such

a way, that it creates a dipole in A, then this dipole will induce a dipole in the opposite

direction in the fragment B. Thus, the fluctuations of dipoles will be correlated due to the

Coulomb interaction. This correlated fluctuation of dipoles in the two fragments leads to an

FIG. 5:

effective attractive interaction of the fragments, because of the opposite orientation of the

interacting dipoles.7

A simple model in Fig. 6 describes this qualitatively. Two systems of one negative and

one positive charge each are connected with a spring at a distance r. The negative and

positive charge in every pair can be separated by z1 and z2, if some force acts on them.

The complex system has a force constant k and (reduced) mass m with ω =
√
k/m. The

separation of charges in small systems brings on dipole moments of µ1 = z1q and µ2 = z2q.

The Schrödinger equation for one oscillator

− ~
2

2m

∂2ψ

∂z21
+

1

2
kz21ψ = Eψ (I.16)

has a set of solutions given by

E =

(
ν +

1

2

)
· ~ω (I.17)

7 This effect is not described at the Hartree–Fock level of quantum mechanics, and is also missing in

density-functional theory. MP2 or CI would cover it.
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FIG. 6:

Now, let us couple the oscillators due to the dipole-dipole interaction:

V (r) = − 2µ1µ2

4πε0r3
(I.18)

If we insert this interaction potential into the Schrödinger equation, we find

E(r) = − q4~ω

2(4πε0)2K2r6
(I.19)

Now, the force on a point charge q in an electric field of intensity E is

F = qE (I.20)

i.e. this force leads to a displacement z, F = kz:

qE = kz (I.21)

Therefore, the induced dipole moment of such an oscillator in the electric field (E) is

µind = qz = q2E/k (I.22)

At the same time, we have

µind = αE (I.23)

Therefore

α = q2/k (I.24)

and we can write Eq. I.19 as

E(r) = − α2
~ω

2(4πε0)2k2r6
(I.25)
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This is the well-known expression for the dispersive interaction, which is attractive with

a R−6 dependence and dependent on the polarizabilities of the interaction partners.

The most common function which combines the Pauli repulsion and the dispersive inter-

action is the Lennard-Jones 12-6 potential

V (r) = 4ε

((σ
r

)12
−
(σ
r

)6)
(I.26)

which is shown in Fig. 7. The minimum lies at rm = 21/6σ and the well depth is −ε, and
σ and ε are treated as empirical parameters. The slight issues with the exp-6 potential

FIG. 7: The Lennard-Jones potential with ε = 0.4 and σ = 2, and a similar exp-6 potential.

are shown in Fig. 7 as well. It might be difficult to find appropriate parameters, which

would render the vdW minimum correctly, and the function becomes negative for small r.

However, the main reason for the exp-6 potential not to be used (except if vitally needed)8

is that it is much more computationally intensive to evaluate the exponential function than

R−6.

To find the vdW parameters for heteronuclear interactions, several “mixing rules” have

been proposed, the simplest being:

σAB =
σAA + σBB

2

εAB =
√
εAA · εBB (I.27)

To find a good set of non-bonded parameters is a challenging task, and force fields are

constantly being improved, meaning that new sets of parameters are proposed. A crucial

8 which may be the case in the studies of phase transitions like freezing

13



I Molecular mechanics 14

test and calibration of a force field is the density and the heat of vaporisation of organic

liquids, since these properites depend critically on the magnitude of non-bonded parameters

— the charges and vdW parameters.

C. Hydrogen Bonding

Early force fields contained special potentials to describe hydrogen bonding. Hydrogen

bond is the attractive interaction between a hydrogen atom and an electronegative atom like

oxygen or nitrogen. The hydrogen must be covalently bonded to another electronegative

atom, so that this covalent bond is polarized and the hydrogen bears a partial positive

charge. A typical example is the hydrogen bond between two water molecules in Fig. 8

left. Typical binding energies are around 20 kJ/mol but may reach higher values if the

binding partners are strongly polarized or even charged, or if there are several hydrogen

bonds between them, like in the GC base pair in DNA, see Fig. 8 right.

FIG. 8: Water dimer (left) and the guanine:cytosine nucleobase pair (right).

Clearly, Coulomb interaction is the dominant contribution to the hydrogen bond, but

vdW interaction can become important also, especially in weakly bound systems. It has

been shown that they become crucial especially to describe the angular dependence of the

interaction energy in complexes like H2CO. . . H2O and similar.

Thus, force fields have everything in place to describe these phenomena (Coulomb and

vdW terms), and most modern force fields do not require a special treatment for this bonding

type. However, a third contribution, the charge transfer (Fig. 9), is not captured by force

fields at all. It may be included in the other terms in an effective way.

14
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FIG. 9: Charge transfer between the charge donor (Y) and acceptor(X–H).

D. Determination of the bonded parameters: harmonic springs

1. Bonds

A bond dissociation curve typically looks like that in Fig. 1, and is well reproduced by

the Morse potential with the functional form

E(r) = D (1− exp [−α(r − r0)])2 (I.28)

In principle, the Morse potential allows for a quite good representation of the potential, in

a broad range of distances. However, it is computationally quite inefficient, because of the

presence of the exponential, and the Morse potential is rarely used in molecular mechanics

studies.

A way to approximate virtually any function is to apply the Taylor expansion

E(r) = E(r0) +
dE

dr
(r0) · (r − r0) +

1

2

d2E

dr2
(r0) · (r − r0)2 + . . . (I.29)

Most force fields use a harmonic approximation, i.e. the Taylor expansion cut after the

second-order term. E(r0) is a constant which we set to zero, and the first derivative dE
dr
(r0)

vanishes if the function has a minimum in r0. Therefore, with the definition of the force

constant k we have, in the second order:

E(r) =
1

2
k(r − r0)2 (I.30)

We can immediately see in Fig. 10 that the approximation of the true potential with a

quadratic function is quite crude and holds only in a quite narrow interval of distances

15
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around the minimum. Importantly, the vibrations of covalent bonds exhibit quite a small

magnitude (of several tenths of ångström) and so we actually never need to describe the

potential beyond this narrow interval.9 The application of harmonic approximation is then

justified. To parametrize such a force field, we need two parameters per bond: the force

constant k and the equilibrium distance r0.

FIG. 10: Comparison of the harmonic and quartic functions with the Morse potential

To be able to compute accurate vibration frequencies, terms up to fourth order can be

important to describe the curvature of the potential energy dependence; Fig. 10 compares

the Morse potential with the harmonic and fourth-order functions. Also, the quartic function

approximates the Morse potential a wider interval of distances.

2. Angles

As for the bonds, we apply a harmonic approximation for the angle deformation and get

the potential

Ebend(ϑ) =
1

2
kϑ(ϑ− ϑ0)

2 (I.31)

Again, we can obtain the parameters from experiment. For instance, let us consider a

9 of course, if we do not aim at studying chemical reactions, i.e. having covalent bonds created of broken

16
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water molecule, which has an equilibrium bond angle of ϑ0 = 104◦ and a bending vibration

frequency of about 1700 cm−1.

3. Dihedrals

Dihedral angles describe the rotation around covalent bonds. Four atoms are needed to

define this angle (ω):

Clearly, the dependence of potential energy on the dihedral angle will be described with

a periodic function, and a usual way to express this is a sum of several cosine functions:

E(ω) =
∑

n=1,2,3,4,6

Vn cos [n · ω − γn] (I.32)

with Vn being the height of the torsional barrier, n giving the periodicity (n = 1: 360◦,

n = 2: 180◦, n = 3: 120◦) and phase offsets γn.

Now, consider the C–C single and the C=C double bonds as examples. The single bond

has a periodicity of 120◦, i.e. we have three minima for one full rotation of 360◦, and the

potential energy is described as

EC−C(ω) = V · cos 3ω (I.33)

17
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The C=C double bond has a 180◦-periodicity and thus only two minima for the full

rotation. The energy is given by

EC=C(ω) = V · cos [2ω − 90◦] (I.34)

E. The complete equation

Adding up all contributions, the total energy of a typical biomolecular force field reads

E(RN) =
1

2

∑

i

ki(ri − r0i )2 +
1

2

∑

j

kϑj (ϑj − ϑ0
j)

2 +
1

2

∑

n

Vn · cos [nω − γn]

+
N∑

i

N∑

j=i+1

{
4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

+
1

4πε0

qiqj
rij

}
(I.35)

F. Exercises

1. Show for the Lennard-Jones potential (Eq. I.26) that the minimum is at rm = 21/6σ

and the well depth is −ε.

2. Calculate the first and second derivative of the general force field (Eq. I.35). Only the

terms dependent on ri and rij are required.

18



II Geometry optimization and normal modes of vibration 19

II. GEOMETRY OPTIMIZATION AND NORMAL MODES OF VIBRATION

Consider again a diatomic molecule. The total force-field energy

E(x) =
1

2
k(x− x0)2 (II.1)

is positive if the distance between the atoms x does not equal the reference bond length x0.

Consider the case, that we obtain the dimer in a geometry with the bond distance of

x1 6= x0. Now, how can we determine the optimal geometry in that case, i.e. the geometry

(distance) with the lowest energy? We calculate the force F acting upon both atoms, as the

negative of the gradient g of energy:

F (x) = −g(x) = −∂E(x)
∂x

= −k(x− x0) (II.2)

To approach towards the minimum, we calculate the force at the actual distance x1

F (x1) = −k(x1 − x0) (II.3)

If we move the atoms in direction of the force until the force is zero, we will reach a stationary

point.

Once there, we have to check if it is indeed a minimum (and not a saddle point, for

instance). We can do this by evaluating the second derivative

k =
∂2E(x)

∂x2
(II.4)

If this is positive (corresponding to a real vibrational frequency ω =
√
k/m), then we are

in a minimum. Otherwise, the frequency is imaginary and the coordinates correspond to a

saddle point on the potential energy surface (which cannot happen with just one harmonic

potential). The second derivative of energy describes the curvature of the potential energy

function and is directly related to the vibrational frequency.

This procedure is what we call energy minimization or geometry optimization.

Generally, our energy function depends on 3N atomic coordinates (x, y, z for each of N

atoms). It is convenient to write all the coordinates in one vector

~r = (x1, y1, z1, x2, . . . zN) (II.5)

19



II Geometry optimization and normal modes of vibration 20

In three dimensions (corresponding to one atom), the gradient reads10

~g = ∇E(~r) =
(
∂E

∂x
,
∂E

∂y
,
∂E

∂z

)
(II.6)

For N atoms, ~g and ~F are 3N -dimensional vectors:

~g =

(
∂E

∂x1
,
∂E

∂y1
,
∂E

∂z1
,
∂E

∂x2
, . . .

∂E

∂zN
,

)
(II.7)

The unit vector in the direction of the gradient is given by

~e =
~g

|~g| (II.8)

A. Steepest-descent minimization (SD)

Within the method of steepest descent, the optimizer moves iteratively – in steps ~h along

the direction of the force

~h = α · ~e (II.9)

The critical point here is the choice of the step size α. If the step is too long, we follow the

gradient down the potential though but may miss the minimum along the gradient and go

up the valley on the opposite side. If the step is too short, we may need to perform too

many steps, which in turn means too many (costly) evaluations of energy and forces.

FIG. 11: Steepest descent minimization

One way to overcome this problem is to perform a line search along the direction ~e, and

find a minimum on this line. In other words, we are looking for a value of αk such that rk+1

10 using nabla — the formal vector of partial derivatives ∇ ≡
(

∂
∂x

, ∂
∂y

, ∂
∂z

)

20



II Geometry optimization and normal modes of vibration 21

FIG. 12: Line search

is the minimum along the search direction ek:

~rk+1 = ~rk + αk~ek (II.10)

The interesting and important point is that two successive search directions (steps) are

orthogonal to each other:

~hk−1 · ~hk = 0 (II.11)

A problem may arise if the energy function forms a narrow valley. In such a case, the second

next search direction will be similar. Therefore, an efficient strategy attempts to avoid this

double work and looks for search directions that are orthogonal to all previous ones.

FIG. 13: Problem of SD in a narrow valley

B. Conjugate gradient minimization

Consider the Taylor series of a 3N -dimensional function up to the second order:

E(~r) = E(~o) +
∑

i

∂E

∂ri
(~o) · ri +

1

2

∑

ij

∂2E

∂ri∂rj
(~o) · rirj

= c−~b · ~r + 1

2
· ~r ·A · ~r (II.12)
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with the constants c, ~b and A given as

c = E(~o), ~b = −∇E(~o), Aij =
∂2E

∂xi∂xj
(~o) (II.13)

If we express the derivative of E in a point ~r, we obtain

∇E(~r) = A · ~r −~b (II.14)

To minimize the function E now means to find the point ~rmin where the derivative vanishes:

∇E(~rmin) = 0. This task corresponds to the solution of this set of linear equations:

A · ~r = ~b (II.15)

To do this, we could calculate the first (~b) and second (A – Hessian) energy derivative and

solve the set of equations.

With that, we would directly obtain the minimum ~rmin, but

• To evaluate the second derivatives is computationally very expensive. If possible, we

try to avoid such a calculation whenever we can (to calculate the gradient, we need

3N derivatives, while for the Hessian we need (3N)2).

• Usually, the potentials of interest are not simple harmonic potentials, i.e. we only

make a local harmonic approximation. Thus, the obtained solution ~rmin is not the

minimum we are looking for, but only a step towards the true minimum. Practically,

we would have to perform such calculations iteratively, which would become very

time-consuming.

Therefore, we look for methods which use information in the form of gradients only.

As we have seen on the example of the SD method, successive gradients can have similar

directions, which leads to a lot of double work. The conjugate gradient method constructs

successive search directions, which are conjugate to each other in a certain way.

Practically, we perform the first step ~h1 along the gradient ~g:

~h1 = −~g1 (II.16)

The second step should be ‘conjugate’ to the first step, i.e. it should not go in the same

direction.
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Now, how does the gradient of E change if we move along a certain direction ~hk? Let us

consider two successive steps k and k + 1. We have:

~gk = A · ~rk −~b

~gk+1 = A · ~rk+1 −~b (II.17)

~gk+1 − ~gk = A · (~rk+1 − ~rk)

This means that going along the search direction ~hk = −~gk, we obtain the change of the

gradient ∆k~g = ~gk+1−~gk. This is the effect of the search direction −~gk. Now, when moving

along the next search direction ~hk+1, we do not want to lose the fruit of the work done so far,

i.e. we wish to keep the change of gradient that has already been made (∆k~g). Therefore,

the gradient shall remain orthogonal11 to ~hk. This can be achieved if the change of gradient

along ~hk+1 is orthogonal to ~hk:

~hk ·∆k+1~g = 0

~hk · (~gk+2 − ~gk+1) = ~hk ·A · (~rk+2 − ~rk+1) = ~hk ·A · ~hk+1 = 0 (II.18)

This condition is a generalization of the concept of orthogonality, and the two vectors ~hk+1

and ~hk are denoted as conjugate (with respect to A). They are orthogonal if the matrix A

is a unit matrix.

Now, we want to perform sequential steps as with the line search algorithm,

~rk+1 = ~rk − αk · ~gk
A · (~rk+1 − ~rk) = −αk ·A · ~gk = ~gk+1 − ~gk (II.19)

If we choose αk such that ~rk+1 is the minimum along the search direction ~gk, we know that

the two successive gradients are orthogonal. We can multiply the last equation with ~gk to

get:

αk =
~gk · ~gk

~gk ·A · ~gk
(II.20)

This equation assures the orthogonality of ~gk and ~gk+1, so that every search direction is

orthogonal to the previous one, and determines the step size. For that, we need the gradient

and the Hessian.

11 or perpendicular in our simple 2D drawings
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However, the calculation of the Hessian is often too costly, and the step should thus

be determined in another way. Several algorithms to do so have been developed, and we

will briefly describe the Fletcher–Reeves method here: The new search direction at ~rk+1 is

calculated as (without proof)

~hk+1 = −~gk+1 + γk · ~hk (II.21)

with

γk =
~gk+1 · ~gk+1

~gk · ~gk
(II.22)

assuring

~gk · ~gl = 0

~gk · ~hl = 0 (II.23)

~hk ·A · ~hl = 0

FIG. 14: Conjugate gradients

• This has to be compared with the steepest descent method. In SD, the search directions

−~gk+1 and −~gk are generally not orthogonal to each other, which can lead to the case

that successive steps spoil the efforts of each other. The conjugate-gradient directions

~hk are not constructed to be orthogonal, either; however, it is their property of being

conjugate (~hk ·A ·~hl = 0) that increases the efficiency of the minimization significantly.

• In principle, CG determines the minimum of a N -dimensional quadratic potential in

N steps. Every vector in an N -dimensional space can be constructed from N basis

vectors. In many cases, these are chosen to be orthogonal. It can be shown, that the
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vectors ~hk form a linearly independent set of vectors, and so they represent an optimal

set of search directions to find the minimum in N steps. The vector determining the

path from the initial point ~r1 to the minimum ~r∗ can then be written as

~r∗ − ~r1 =
∑

k

αk · ~hk (II.24)

C. Hessian-update based methods: Newton–Raphson and quasi-Newton–Raphson

Now, consider the vector

~r = ~r∗ − ~r1 (II.25)

where ~r∗ is the global minimum and ~r1 an arbitrary starting point. Since the gradient

vanishes in the minimum, we find from

A · ~r = ~b (II.26)

that

~r = A−1 ·~b

~r∗ = ~r1 +A−1 ·~b (II.27)

so that we are able to find the minimum of a quadratic potential in one step, simply by

inverting the Hessian A. This is a very favorable property, because in CG we would have

needed around N steps (N – dimensionality of the problem). The Hessian contains the in-

formation about the curvature of the function, with large curvature giving large eigenvalues.

Therefore, the inverse of the Hessian leads to large steps in regions of low curvature and vice

versa This property will speed up the convergence for shallow potentials, where it would be

very slow just to follow the gradient.

A trivial example is the parabola f(x) = x2. For this function, the so called Newton–

Raphson (NR) method as described in Eq. II.27 gives:

0 = r1 −
1

2
· 2 · r1 (II.28)

(with f ′′(r) = 2 and f ′(r) = 2r). Compare this with a flat potential like f(r) = 0.1 · r2. The
inverse of the second derivative f ′′(r) = 0.2 is [f ′′(x)]−1 = 5, giving a large step size.

Practically, there are some issues:
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• to evaluate the Hessian and to invert it (an O(N3)-operation) can be very costly, co

that the CG method becomes computationally cheaper, in particular if

• the potential is not harmonic. Then, NR may even fail (converge to a saddle point,

proceed in a wrong direction etc.) and it may not be the method of choice.

Therefore, one usually starts the optimization (when forces are large) with SD and CG, and

NR is invoked only later – close to the minimum, where the harmonic approximation works

better.

Very efficient are so-called Hessian-update methods, where the inverse Hessian is not

calculated, but rather updated during the optimization.

~rk+1 = ~rk −A−1
k · ~gk (II.29)

One starts with A−1
1 = I (unit matrix) and the matrix is ‘updated’ in every step, so that it

is identical to the inverse Hessian for large k. This means that in the beginning, one follows

the gradient, and the information about the curvature is collected along the way.

All optimization techniques require a criterion to stop the procedure. Common practice

is to stop if the gradient and the change of energy between two steps become small (smaller

than a preset threshold).

D. Harmonic approximation of molecular vibrations: the normal modes

The displacement from equilibrium of a harmonic oscillator r(t) is given by the solution

of the ordinary differential equation

m · r̈ = −k · r (II.30)

with k being the second derivative of the potential with respect to the displacement r. If

we insert r(t) = A · sin(ωt), we immediately obtain

−m · ω2 = −k (II.31)

and the vibrational frequency ω =
√
k/m.

If we think of large molecules like proteins with N atoms, the problem becomes quite

complicated. Every atom interacts with each other, so we have to deal with N2 interactions,
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which are usually not harmonic (Coulomb and vdW interactions, many-body interactions,

although the bonded terms are harmonic).

In the harmonic approximation, we take the force-field energy I.35 and apply the Taylor

approximation around the equlibrium positions of the atoms, with ri being the deviations

from the equilibrium (the first derivative vanishes at equilibrium):

E(~r) = E(~r0) +
1

2

N∑

i,j

∂2E

∂ri ∂rj
· ri · rj (II.32)

With

kij =
∂2E

∂ri ∂rj
(II.33)

and setting E(~r0) = 0 we have

E(~r) =
1

2

N∑

i,j

kij · ri · rj (II.34)

Note that the kij introduced here are different form the force constants in the force field!

The force on atom i is now the (negative of the) derivative of the energy with respect to

the atomic coordinate ri:

Fi = −
∂E

∂ri
= −

N∑

j

kij · rj (II.35)

Looking at atom i, we have

mi · r̈i = Fi = −
N∑

j

kij · rj (II.36)

Since we have E, we know how to calculate the second derivatives, once we have located the

minimum. The movement of atom i is now coupled to all other atoms, and the equations we

have to solve become quite complicated. In case of a diagonal matrix kij = kiiδij, we would

have

mi · r̈i = kii · ri (II.37)

for which we know the solution

ri(t) = ai · sin[ωt] (II.38)
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where we have a system of uncoupled oscillators. We can use this as an ansatz to solve the

system of coupled oscillators, to obtain

mi · ω2 · ai = −
N∑

j

kij · aj (II.39)

The vector ~a = (a1, a2 . . . a3N) gives the amplitude of the motion, i.e. determines how much

an atom is involved in the motion. We define λ = ω2 and the (diagonal) mass matrix

Mii = mi. With that, we can write:

λ ·M · ~a = k · ~a (II.40)

Multiplying from the left with M−1, we get

λ · ~a = M−1 · k · ~a (II.41)

This is an eigenvalue problem for the matrix M−1 · k, which we know how to solve. The

only problem is that this matrix is not symmetric, which makes the numerical solution more

difficult. Therefore, we look how to get an eigenvalue problem for a symmetric matrix.

This can be done if we define

~b = M1/2 · ~a i.e. ~a = M−1/2 ·~b (II.42)

and get instead of II.40 this problem:

λ ·M1/2 ·~b = k ·M−1/2 ·~b (II.43)

Now, we multiply from the left with M−1/2 and obtain

M−1/2 · λ ·M1/2 ·~b = M−1/2 · k ·M−1/2 ·~b

λ ·~b = k̃ ·~b (II.44)

with a symmetric matrix k̃ given as

k̃ij =
kij√
mi
√
mj

(II.45)

Now, we can solve a standard eigenvalue problem

(
k̃− λ · I

)
·~b = 0 (II.46)
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to get the eigenvalues λν and eigenvectors ~bν . The N×N matrix k̃ has N eigenvalues λν and

eigenvectors ~bν , which correspond to the normal modes of the system. These represent the

independent modes of motion of the molecule. Every eigenvector ~bν contains the amplitudes

of every atom in the system (in the directions x, y and z), contributing to the particular

normal mode ν: ~bν = (bν1, b
ν
2, ...b

ν
N ).

For example, think of the three modes of vibration of a water molecule:

Example:

Consider a fictitious linear triatomic molecule, with two equal bond lengths and force

constants, atom masses m1, m2 and m3 = m1, and harmonic springs only between atoms

1–2 and 2–3. The potential energy E then reads

E =
1

2
k · (x1 − x2)2 +

1

2
k · (x2 − x3)2 (II.47)

with xi being the displacements from the equilibrium positions.

We have the Hessian

k =




k −k 0

−k 2k −k
0 −k k


 (II.48)

the mass matrix

M =




m1 0 0

0 m2 0

0 0 m1


 (II.49)

and the mass-weighted Hessian

k =




k
m1

− k√
m1m2

0

− k√
m1m2

2 k
m2

− k√
m1m2

0 − k√
m1m2

k
m1


 (II.50)
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The solution of the eigenproblem leads to three normal modes:

λ = k√
m1

: b1 = −b3, b2 = 0

λ = 0 : b1 = b3, b2 =
√
m2/m1 · b1

λ = k · m2+2m1

m1m2

: b1 = b3, b2 = −2
√
m1/m2 · b1

(II.51)

The first mode describes a motion with the central atom at rest, and m1 and m3 vibrat-

ing with opposite amplitudes – symmetric stretch. The second mode corresponds to pure

translation of the whole molecule along the x axis. Since a1 = a3 = b1√
m1

, we find that a2 =

a1. In the third mode, the central atom moves in the opposite direction to the outer atoms

– asymmetric stretch.

E. Exercises

1. Consider the function f(x, y) = x2 + 2y2. Calculate the gradient in the point (2,2)

and the Hessian in (0,0). Would you reach the minimum when moving along that

gradient? What are the eigenvalues of the Hessian in (0,0)? Start in the point (0,1)

and move along the gradient with the step size of 1. Where do you arrive at?

2. Starting in the point (9,9), a line search in the first step finds the point (4,−1). Show
that the new search direction constructed in this point with CG directly reaches (0,0).

3. Show that you arrive in the minimum in one step if you use the Newton–Raphson

method.

4. Consider the function f(x, y) = x4+4x2y2−2x2+2y2. Plot this function and determine

the eigenvalues of the Hessian in the minimum (1,0) and in the saddle point (0,0).

What are the eigenvectors?

5. Derive the Hessian of the artificial linear triatomic system (Eq. II.50).
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III. MOLECULAR DYNAMICS SIMULATIONS

Consider a chemical reaction in solution. The molecules of solute are surrounded by many

water molecules, which fluctuate and thereby assume different hydrogen bonding interac-

tions with the solute. The different orientations of water molecules induce different dipole

moments on the solute. As a result

• the energy of the system will fluctuate a lot;

• since there are a multitude of local minima close in energy, the search for a global

minimum will become extremely difficult if not meaningless;

• even if a global minimum is found, the product state may have a very different

global minimum than the reactant state with respect to the conformation of the water

molecules. In this case, we do not know how to compare the energies at all!

The (micro)state of a system is completely determined, if we know the positions ~ri

and the momenta ~pi of all the particles. We call the 6N -dimensional space spanned by the

coordinates and the momenta the phase space, {~ri, ~pi}.
A trajectory in the phase space is the sequence of points {~ri(t), ~pi(t)} passed by during

the dynamics of the system.

Example:

Consider the simple harmonic oscillator. We can plot the time dependence of the coordinate

r(t) = a · cos [ωt] (III.1)

as well as the time dependence of the velocity

v(t) = −aω · sin [ωt] (III.2)

On the other hand, we can also plot the velocities versus the coordinates in the 2-dimensional

phase space, and we see easily that the trajectory in the phase space is elliptic:

(
x(t)

a

)2

+

(
v(t)

a · ω

)2

= 1 (III.3)

The total energy of the harmonic oscillator is

E = T + V =
1

2
mω2a2 (III.4)
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Therefore, different values of a and ω correspond to different energies. The trajectories in

phase space never cross for such so-called conservative systems (systems conserving the

total energy). If we have friction or some other damping, the oscillator is losing energy

(non-conservative system) and the motion will look like spirals ending in the origin. Here,

different trajectories may cross.

Now, let us return to the molecule in solution. It does not make much sense to look at

a single structure; rather, we may wish to average the property of interest over all available

structures. For example, we follow the trajectory in phase space for some time and evaluate

the energy for many snapshots {~ri(tk), ~pi(tk)} along the trajectory. So, we obtain values of

energy Ek in time instants tk (k = 1, . . . ,M) and calculate the average:

〈E〉 = 1

M

M∑

k=1

Ek (III.5)

We do this for the product and for the reactant, obtain average energies for both states,

and thus the energy difference. In principle, this is a very good idea, but there are a few

issues:

• How can we assure that we have enough points (snapshots) to represent all possible

(or at least relevant) conformations of the molecular system?

• How do we obtain the trajectory? → perform MD! Then, how to consider the tem-

perature?

• Suppose we know the structure of the reactant, then how do we get the structure of

the product and, if desired, the whole reaction path? This is a difficult problem and

we will have to spent some time on that.

• What about entropy? Does the average of energy provide sufficient information? This

is another difficulty, so we will have to look deeper into thermodynamics and statistics.
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Here, we are at the core of biomolecular simulations: It is easy to understand the total

energy of the force field, and how geometry optimization works. The main issue is to make

proper use of the energy function to get the thermodynamic properties right. Biomolecular

simulations are all about thermodynamics, in possible contrast to quantum chemistry, where

people look at small molecules with quite simple structures and with a focus just on total

energies. At the moment, we will concentrate on the former two points. The latter two

points will be discussed in next chapters.

If we have a trajectory, we can calculate so-called time averages for the properties of

interest, like structural properties or velocities. For any property A(t), this works the same

way as for energy, so that we may generalize the Eq. III.5:

〈A(t)〉t =
1

t1 − t0

∫ t1

t0

A(t) dt (III.6)

On the other hand, an experimental sample contains a huge number of molecules. This

number is so large that we can assume all relevant conformations of molecule and solvent

to be present. Think of a large number of harmonic oscillators, then for every point in the

phase space ~ri, ~pi, there will be for every point (on the ellipse) an oscillator, which is at that

point. Such a collection of systems is called an ensemble.

Now, let us count how many molecules (oscillators) in the ensemble are found in a phase-

space point ~ri, ~pi as well as in all the other points. Doing this, we obtain the phase space

density, i.e. the number of realizations of each point in the phase space (per a unit of

volume):

ρ(~r, ~p) (III.7)

If we integrate ρ over the entire phase space, we obtain the total number of systems (oscil-

lators or molecules):

Z =

∫
ρ(~r, ~p) d~r d~p (III.8)

We can use this phase space density to calculate the ensemble average:

〈A〉e =
1

Z

∫
A · ρ(~r, ~p) d~r d~p (III.9)

Experimentally, we always measure ensemble averages; however, in a simulation, we

always have a single system for which we calculate time averages. To be able to compare
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both, we always assume that the systems we study are ergodic. This means that the system

passes through all points of the phase space constituting the real ensemble during the MD,

provided the simulation is long enough. If the system is indeed ergodic, then these averages

are equal:

〈A〉e = 〈A〉t (III.10)

We leave the statistics for a moment and have a look, how we can get the trajectories in

computer simulations.

A. Integration of the equations of motion

The total energy E = T + V is often termed Hamilton function H, or Hamiltonian in

quantum mechanics. The Hamilton formalism is a practical way to derive equations of

motion, once we know the total energy:

ṙi =
∂H

∂pi
ṗi = −

∂H

∂ri
(III.11)

We cannot prove these equations here, but give an example (momentum p = m · v):

H =
1

2

p2

m
+

1

2
kr2

ṙ =
∂H

∂p
=

p

m
(III.12)

ṗ = −∂H
∂r

= −k · r

which, if put together (ṗ = m · r̈ from the eqn for ṙ), give the well-known equation of motion

of the harmonic oscillator. These are ordinary differential equations (ODE) of 1st and

2nd order.

A 1st-order differential equation may look like e.g.

ẋ = −k · x (III.13)

which has the solution x(t) = A · exp [−k · t]. Examples of phenomena in nature following

such an exponential law are radioactive decay or the dynamics of populations.

More generally, we can write these ODEs as

ẋ = f(x, t) (III.14)
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A 2nd-order ODE then follows as

ẍ = f(x, ẋ, t) (III.15)

An example is the equation of motion of a harmonic oscillator ẍ = − k
m
· x, or, when we

introduce damping

ẍ = −ζ · ẋ− k

m
· x (III.16)

The damping is assumed to be proportional to velocity, which is very often the case.

We can reduce the 2nd-order ODE to two 1st-order ODEs by introducing v:

ẋ = v

v̇ = −ζ · v − k

m
· x (III.17)

Now, we have to solve these ODEs numerically. There are several methods available, which

we will briefly discuss.

B. The Euler method

To solve a 1st-order ODE

ṙ = f(r, t) (III.18)

we proceed by a Taylor expansion (∆t = t− t0):

r(t) = r(t0) + ṙ(t0) ·∆t+
1

2
r̈(t0) ·∆t2 + . . . (III.19)

The Euler approximation is a first-order approximation, so that we neglect the second

and higher orders:

r(t) ≈ r(t0) + ṙ(t0) ·∆t (III.20)

We start the numerical integration at time t0, take a time step ∆t and get the value of r

and v in the time t = t0 +∆t. For our MD simulation, we have

r(t0 +∆t) = r(t0) + v(t0) ·∆t

v(t0 +∆t) = v(t0) + a(t0) ·∆t (III.21)

a(t0) = − 1

m

∂H

∂r
= −F

m
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where H is the Hamilton function. Instead, we can use the potential energy V only, and the

derivative of V is the force upon the atom.

To start the MD, we have to specify the initial conditions – the positions r0 and the

velocities v0, and calculate the force at the positions x0 to get the accelerations a0. Then,

we can use the Euler equations to get the positions and velocities at the time t0 + ∆t.

This means, to obtain a trajectory over a time interval T , we have to evaluate the forces

on all atoms M = T/∆t times, i.e. to perform M steps. Therefore, the computational cost

of the calculation of forces determines how many steps we can afford to make.

The length of the time step is a crucial parameter in the simulation. There is a numerical

and a chemical constraint on the step size:

• Numerical: Since we neglect the contributions in ∆t2 and higher orders, we introduce

an error in the order of ∆t2 (O(∆t2)). A possibility is to make the step very short, so

that the error is small. But then, we need to perform too many steps to simulate a

certain time T . on the other hand, if we make the step too long, we introduce an error

in the integration. We will notice this error in the total energy: E = T + V should be

conserved, and if we monitor the total energy during the MD we can see, how good

our integration is.

• Chemical: The fastest motion in biological systems is the movement of hydrogen

atoms, with the period of around 10 fs. A rule of thumb recommends the step size

to be at least an order of magnitude smaller than the period of the fastest motion.

Practically, this leads to a step size of 1 fs.

The step size (of typically 1 or several fs) is the fundamental time unit in MD. This means,

we need 1 million calculations of energy and forces to get a trajectory in a total length of

1 ns. For large systems, multi-nanoseconds simulations can be routinely done, and even

microsecond regime may be reached for smaller ones.

C. The Verlet method

The numerical error of the Euler method is too large to allow for time steps of 1 fs.

Therefore, methods with errors in O(∆t3) have to be used. A popular one is the Verlet

method. Here, we make a virtual step in positive time and in ‘negative’ time, and expand
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up to second order:

r(t+∆t) = r(t) + ṙ(t) ·∆t+ 1

2
r̈(t) ·∆t2

r(t−∆t) = r(t)− ṙ(t) ·∆t+ 1

2
r̈(t) ·∆t2 (III.22)

We may add both equations to eliminate the velocity ṙ:

r(t+∆t) = 2 · r(t)− r(t−∆t) + r̈(t)∆t2

r̈(t) = a(t) = − 1

m

∂V

∂r
(t) = −F (t)

m
(III.23)

This equation seems to be a little strange, as it requires not only the positions r(t) and

the accelerations a(t), but in addition the positions one step back r(t−∆t)! This may look

like a problem, because at the start of a MD, we know only r(t0), v(t0) (and a(t0) via forces)

but not r(t0 −∆t). This would mean that Verlet could not be started. We have to use the

initial velocities to calculate the positions an imaginary step back r(t0−∆t) to start Verlet:

r(t0 −∆t) = r(t0)− v(t0) ·∆t (III.24)

The algorithm does not contain velocities explicitly; if these are of interest, they may be

obtained as

ṙ(t) = v(t) =
r(t+∆t)− r(t−∆t)

2 ·∆t (III.25)

This form of the algorithm is called the Verlet normal form.

Several equivalent variations of the algorithm have been developed, like the velocity

Verlet.12 Here are new positions calculated first

r(t+∆t) = r(t) + v(t) ·∆t+ 1

2
a(t) ·∆t2 (III.26)

followed by the evaluation of forces (and thus accelerations) in the new positions. New

velocities are then obtained as

v(t+∆t) = v(t) +
1

2
(a(t) + a(t+∆t)) ·∆t (III.27)

which are used in the next calculation of positions r.

12 Another often used variant is the leap-frog.
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Here, MD can be started with the knowledge of x0 and v0; however, in every next step,

new positions r(t + ∆t) must be calculated first so that accelerations may be updated in

order to obtain v(t + ∆t). Although both mentioned forms of the Verlet algorithm are

equivalent, the velocity Verlet exhibits better numerical precision.13

D. More advanced methods

The Verlet method (with the error of O(∆t3)) is a very approximative one though, but

it is routinely used in MD simulations for its favorable performance due to the necessity

to evaluate only second derivatives of positions (accelerations). Plenty of more accurate

methods to solve ODEs have been developed, and we will briefly mention a few of them.

A straightforward way to improve the quality of integrator would be to involve several

extra terms from the Taylor expansion, i.e. to cut the expansion at some further point.

The classical Runge–Kutta method evaluates the first derivative in several points (selected

with a special algorithm, ki) in every step, and the function r is the integrated using a

weighted average of these values:

rn+1 = rn +
1

6
∆t · (ṙ(k1) + 2 · ṙ(k2) + 2 · ṙ(k3) + ṙ(k4)) (III.28)

This reduces the error to O(∆t5) (fourth-order method).

The Gear’s predictor–corrector family of methods provides solutions correct to an order

of choice. Here, new position etc. are calculated (‘predicted’) from the Taylor expansion as

usually. Then, the forces are calculated in the new positions to give accelerations. These

are then used to ‘correct’ the new positions, and new positions are then calculated finally.

This method is rarely used due to the considerable computational requirements, although it

may provide quite accurate solutions of equations of motion as well as make a longer time

step possible.

13 The numerical problem of normal Verlet is that it adds a small but important term r̈(t0)∆t2 to a large

term calculated as a difference 2r(t)− r(t−∆t).
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E. Exercises

1. Derive the equations of motion for the linear triatomic system with Hamiltonian

H =
1

2

3∑

i=1

miv
2
i +

1

2
k(x1 − x2)2 +

1

2
k(x2 − x3)2 (III.29)

2. Derive the equations of motion for the particle i (ri and pi) using the Hamilton for-

malism for

H =
1

2

∑

i

miv
2
i +

1

2

∑

ij

Vij (III.30)

Vij is given by the Lennard-Jones potential discussed in Chapter 1. These are the

equations we have to solve when doing real MD for a system of uncharged particles

without covalent bonds, like argon atoms.
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IV. THERMODYNAMIC ENSEMBLES

A system of classical particles interacting with a potential V is a deterministic system.

Knowing the initial conditions, which consist of the positions and velocities of all particles

at the initial time, we can calculate the trajectory of the system, i.e. the positions r(t) and

velocities v(t) at all future times t. We can have analytic solutions, as in the case of the

harmonic oscillator, where we have the trajectories in a closed form:

x(t) = x0 · cos[ωt] v(t) = −v0 · sin[ωt] (IV.1)

or, if the system becomes too complicated, we have to compute the trajectories numerically,

for instance using the Verlet method.

Note that so-called chaotic systems are also strictly deterministic. For completely spec-

ified initial conditions, the system is perfectly predictable. The point here is that two

trajectories which are initially close in phase space, may depart exponentially from each

other, while they would stay close in non-chaotic systems (e.g. harmonic oscillator). We

say that the solution of the underlying differential equations is unstable. This may happen

already for seemingly simple systems like a double pendulum!

FIG. 15: For a ‘chaotic’ system, two initially close trajectories depart exponentially. Therefore,

small differences in the initial conditions may lead to very different behavior of the system, although

being completely deterministic.

A motion becomes stochastic, if we do not have the information about all degrees of

freedom, like for a dust particle moving in an erratic fashion. If we could keep track about

the movements of all air molecules, the particle motion would be completely deterministic

for us. We have to describe systems using statistical mechanics, if we cannot keep track

of all degrees of freedom.
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We are now interested to find simulation techniques, where we can control the tempera-

ture. The temperature is a crucial parameter, which determines if a certain part of the phase

space is to be reached during the MD. The phase space will be sampled differently at high

temperatures than at low ones, and different ensembles will be generated. In particular, we

have to find a way to model the system, that we simulate the right phase space density.

FIG. 16: A high energy E = Ekin +Epot allows to sample more different parts of the phase space.

The difference E − Epot corresponds to the kinetic energy Ekin.

A. The microcanonical (NVE) ensemble: an isolated system

A system is called isolated if it exchanges neither energy (in the form of heat or work)

nor matter (particles) with the environment. In this case, the total energy of the system is

constant and given by the sum of the kinetic energy Ekin and the potential energy Epot

E = Ekin + Epot (IV.2)

Like for the harmonic oscillator, the kinetic and potential energies fluctuate in time as

they are being transformed into each other all the time, keeping the total energy constant.

This is what we describe when using the plain Verlet method for a large molecule after

specifying the initial conditions. Looking into different regions of the molecule, the kinetic

energy can be very different locally.

It is known from kinetic theory of gases that the kinetic energy is related to the temper-

ature T

〈Ekin〉 =
3

2
NkT (IV.3)
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with 〈Ekin〉 = 1
2

∑
imi 〈v2i 〉. So, if we stuck a thermometer into various regions of the entire

system (with N particles), we would measure different temperatures, fluctuating in time.

This is not quite the situation we normally have in the experimental setup (a test tube

with a sample). Usually, our systems are in thermodynamic equilibrium with the envi-

ronment, so that they have the same temperature (and optionally pressure) as the environ-

ment.

FIG. 17: Left: Isolated system. Right: Closed system; exchange of heat in the canonical ensemble.

The canonical ensembles allow for the exchange of heat and work, but not matter (par-

ticles).14 If we keep the volume, temperature and number of particles constant, we call the

system an NVT ensemble. If we keep pressure, temperature and the number of particles

constant, allowing the volume to change, it is called an NPT ensemble.

B. The canonical (NVT) ensemble: a closed system

In the canonical ensemble, the thermal contact of the system with the environment

leads to an exchange of energy in the form of heat, until the same temperature T as in

the environment is reached. Strictly spoken, temperature is only defined if there is such a

thermal contact, and therefore not applicable to the closed systems as discussed above.

For a classical system in thermal equilibrium is the velocity of a particle/atom (its com-

ponent in any direction) and the speed15 given by the Maxwell–Boltzmann distribution

14 There is another thermodynamic ensemble with constant volume, temperature and chemical potential,

allowing the number of particles to change = exchange of matter with the environment (grand canonical

ensemble).
15 Velocity is the vector ~v and its magnitude is denoted as the scalar speed (v).
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p(vx,i) =

√
mi

2πkT
· exp

[
−
miv

2
x,i

2kT

]
(IV.4)

p(vi) = 4π
( mi

2πkT

)3/2
· v2i · exp

[
−miv

2
i

2kT

]
(IV.5)

FIG. 18: The distribution of velocity in the x direction (left) and speed (right) of a N2 molecule

(ideal gas approximation).

With this, the equipartition theorem (Gleichverteilungssatz) can be derived, which

ascribes every degree of freedom the same amount of kinetic energy of
〈
1

2
miv

2
x,i

〉
=

1

2
kT (IV.6)

Since every atom i has three degrees of freedom xi, yi and zi (and v
2
i = v2x,i + v2y,i + v2z,i), we

find for the total kinetic energy of the system

〈Ekin〉 =
〈
∑

i

1

2
miv

2
i

〉
=

〈
∑

i

1

2
miv

2
x,i +

1

2
miv

2
y,i +

1

2
miv

2
z,i

〉
=

3

2
NkT (IV.7)

The point is that this special velocity distribution is a property of systems in contact with

a heat reservoir, which is not the case for the microcanonical ensemble.

We can use this formula to control the temperature in our system in a very simple way.

An algorithm that allows to control the temperature during an MD simulation is called

a thermostat.

1. Scaling of velocities

We start the simulation using one of the variants of the Verlet integrator, having specified

the initial positions and velocities. Usually, we know the positions from (experimental struc-
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ture etc.), and velocities can be drawn randomly from the Maxwell–Boltzmann distribution

corresponding to a desired temperature (using a random number generator).

In the course of the simulation, the actual temperature will deviate from the target

temperature, which may be understood as the temperature of the heat bath in equilibrium

with the simulated molecular system:

T (t) =
2

3

Ekin(t)

Nk
6= Tref (IV.8)

Note a discrepancy with the previous definition of thermodynamic temperature (Eq. IV.3) —

temperature should correspond to the average of kinetic energy over time. However, Eq. IV.8

presents some sort of ‘instantaneous temperature,’ i.e. ‘temperature’ in a certain time t.

This quantity will fluctuate in the course of simulation, whereas the true thermodynamic

temperature is an average over this simulation.

The instantaneous temperature is just another name for the mean kinetic energy

(Eq. IV.3), which is in turn determined by the velocities of the atoms. Now then, a simple

idea how to bring the instantaneous temperature to the target is to scale the velocities of

all atoms by a certain multiplicative factor λ. The required magnitude of this factor may be

estimated by casting the ‘new’ velocities λ · vi into the expression for the temperature and

making this equal to Tref :

Tref =
1

3
2
Nk
· 1
2

∑

i

mi (λ · vi)2 =

= λ2 · 1
3
2
Nk
· 1
2

∑

i

miv
2
i =

= λ2 · T (IV.9)

From this, the value of λ follows simply as

λ =

√
Tref
T

(IV.10)

So, we have to scale the velocities of all atoms by this factor, in order to obtain the target

temperature Tref exactly.

This is a very crude way of controlling the temperature. From time to time, we knock

the system by rescaling the velocities, affecting the ‘natural’ way of evolution of the system.

This is quite drastic and can lead to artifacts. More importantly, the system does not

represent any canonical ensemble, i.e. its phase space density ρ is not that of a canonical
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ensemble. As for the velocities, we never make sure that their distribution is correct (the

Maxwell–Boltzmann distribution). This is very important because we calculate all properties

of interest as averages:

〈A〉 = 1

Z

∫
ρ · A d~r d~p (IV.11)

With the velocity scaling method, it could happen that our system would sample the phase

space incorrectly, leading to wrong averages.

2. Berendsen thermostat

A way to avoid the severe turns in the dynamics is to adjust the velocities more smoothly,

resigning on the target temperature to be recovered in every step (like it is done with simple

scaling).

With the Berendsen coupling scheme, the simulated system is considered as coupled to

an infinite thermal bath with temperature Tref . We ask the temperature to change between

two time steps according to:

dT

dt
=

1

τ
(Tref − T ) (IV.12)

so that the rate of change of temperature (due to the change of velocities) is proportional to

the deviation of the actual temperature from the target. The constant of proportionality is

the relaxation time τ , and this 1st-order differential equation corresponds to an exponential

decay of temperature towards the target. Thus, we want to change the temperature by

∆T =
∆t

τ
(Tref − T ) (IV.13)

which will be achieved by scaling the velocities by a factor λ as above:

∆T = Tref − T =
(
λ2 − 1

)
· T (IV.14)

λ =

√
1 +

∆t

τ

(
Tref
T
− 1

)
(IV.15)

For τ = ∆t, we get the simple velocity scaling; for the usually applied larger values

(τ = 0.1 − 1 ps), the temperature of system is fluctuating around the target temperature

(of the imaginary external bath).
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This fluctuation of temperature is a desired property. For the canonical ensemble, we

can calculate the variance of ‘instantaneous temperature’ T :

σ2
T =

〈
(T − 〈T 〉)2

〉
=
〈
T 2
〉
− 〈T 〉2 (IV.16)

and obtain the relative variance

σ2
T

〈T 〉2
=

2

3N
(IV.17)

For large number of particles (atoms) N , the magnitude of fluctuations approaches zero.

However, for finite-sized systems, we observe a visible fluctuation of temperature, which is

indeed a feature of the canonic ensemble. So, if we kept the kinetic energy (and thus the

instantaneous temperature) constant by means of the simple velocity scaling, we would not

obtain the correct fluctuations.

There are several drawback with the velocity rescaling algorithms:

• It does not generate a rigorous canonical ensemble.

• Various parts of the system (different individual molecules, or solute × solvent) may

exhibit different temperatures, while the temperature of the entire system is correct.

This discrepancy may be maintained for extended periods of time.

• It gradually moves the energy from the fastest modes of motion to the slowest/weakest

ones, violating the equipartition theorem. The bond stretching and angle bending

modes are usually the fastest modes, and the loss of energy of these modes manifests

itself as a ‘freezing’ of the molecules. On the other hand, the three translations (and,

for aperiodic systems, the three rotations) of the entire system are the slowest modes,

and thus those that actually gain the energy. This problem is known as the ‘flying (or

spinning) ice cube.’

3. Andersen thermostat

The Andersen thermostat has an entirely different working principle. From time to time,

some particles (atoms) are selected to undergo a ‘collision’ with the particles of a heat bath,

which changes their velocities suddenly. Such an algorithm exhibits a certain stochastic

character.

This thermostat works as follows:
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• Start the MD with a standard integrator (Verlet. . . )

• Select randomly the particles (atoms) that shall undergo a collision with the heat bath.

• For these particles, assign new velocities by a draw from the correct Maxwell–

Boltzmann distribution. All other particles remain unaffected.

The advantage of the Andersen thermostat is that if correctly implemented, it really

generates a canonical ensemble. However, for this to come true, the rate of collisions with

imaginary particles must be neither too low (insufficient) nor too high (in that case, the

collisions would dominate the dynamics of the system over the equations of motion).

4. Nosé–Hoover thermostat

The Nosé–Hoover thermostat rigorously represents a canonical ensemble and is thus usu-

ally the method of choice. However, it is conceptionally and mathematically slightly difficult

to understand. We present the fundamental ideas here.

The heat reservoir is treated as a part of the system and is assigned an extra degree of

freedom s, with which a fictitious mass Q is associated. The equations of motion are then

derived for this extended system with 3N + 1 degrees of freedom.

The equations of motion for the atoms are modified to

r̈i =
Fi

mi

− s · ṙi (IV.18)

with the second term formally corresponding to a kind of ‘friction’ due to the bath. Further,

there is another equation of motion for the bath parameter s:

ṡ =
1

Q
(T − Tref) (IV.19)

The strength of coupling of the real system to the bath is determined by the ‘mass’

parameter Q. This may be made more intuitive by introducing a time parameter τ :

Q =
τ 2 · Tref
4π2

(IV.20)

This parameter has the meaning of a period of oscillation of the kinetic energy between

the real system and the bath. Here, it is important to note the difference between the

τ in the Berendsen and in the Nosé–Hoover coupligs: The Berendsen method consists in
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the exponential damping of temperature difference, with coefficient τ . In the Nosé–Hoover

framework, an oscillatory relaxation of temperature is achieved, with period τ .

This way, the prerequisities of the thermostat are incorporated in the equations of mo-

tion, and the thermostat thus constitutes an integral part of the integrator, rather than an

a posteriori correction, as is the case of all previosly mentioned ones. The Nosé–Hoover

thermostat is used frequently and it can be shown that the ensemble average taken with the

Nosé–Hoover ensemble is identical to that of the canonical ensemble.

C. The canonical NPT ensemble

Rather than under the condition of constant volume, chemical experiments are usually

performed under constant pressure, often the atmospheric pressure. Therefore, it is of

importance to be able to implement such conditions in MD simulations as well.

Similar to temperature, it is possible to calculate the pressure in the simulation. This is

usually done by using the quantity called the virial of force:

Ξ = −1

2

∑

i<j

~rij · ~Fij (IV.21)

where ~rij is the vector connecting atoms i and j, and ~Fij is the force acting between these

atoms. The pressure then follows as16

P =
2

3V
· (Ekin − Ξ) =

2

3V
·
(
1

2

∑

i

mi · |~vi|2 +
1

2

∑

i<j

~rij · ~Fij

)
(IV.22)

A surprising feature of pressure calculated in this way is that it fluctuates immensely along

a simulation and can even assume negative values!

Once a means to calculate the pressure is available, it is possible to develop an algorithm

to maintain it at a constant value. These barostats are equivalents of the Berendsen or

Nosé–Hoover algorithms to maintain constant temperature. Instead of velocities, it is the

volume of the simulation box that is varied in order to adjust pressure; this is done either

directly (Berendsen) or again via an additional degree of freedom (Parrinello–Rahman).

16 Note the difference between the kinetic theory of gases and this definition — the idea of the particles

colliding with the wall of the container is not present here.
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FIG. 19: Temperature and pressure in an NPT simulation of DNA oligomer in water (Tref = 300 K,

Pref = 1.0 bar).

D. Exercise

Prove the equipartition theorem (Eq. IV.6) using the Maxwell–Boltzmann distribution

(Eq. IV.5) as the phase-space density to evaluate the ensemble average
〈
v2x,j
〉
ens

(Eq. III.9).

To do this, you have to solve integrals of the forms

∫ ∞

0

x2 exp[−ax2] dx

and ∫ ∞

0

exp[−ax2] dx

which may be found at http://en.wikipedia.org/wiki/Lists_of_integrals.
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V. NON-BONDED INTERACTIONS

There are several reasons to take particular care of the non-bonded interactions:

• They are a key to understand the structure, function and in particular the efficiency of

action of many proteins. It is the electrostatic and/or van der Waals interaction of the

protein with the ligand that is responsible for the efficiency of a reaction, color of the

chromophore etc. The solvent surrounding is co-responsible for the particular structure

of nucleic acids, polypeptides and proteins (hydrophobic-hydrophilic residues).

• The non-bonded interactions are treated in MM by two-body potentials, and the com-

putational effort of O(N2) dominates the overall requirements for large molecular sys-

tems. Therefore, the non-bonded (above all, the long-range electrostatic) interactions

represent a good target for optimizations.

• Solvation plays a crucial role in determining the structure and function of biomolecules.

However, the necessary amount of water is often extremely large, becoming the main

source of computational cost.17 Therefore, there is a need to efficiently describe the

solvation effects, which are of a predominantly electrostatic character (due to the large

dipole moment of the water molecule).

A. Introduction to electrostatic interaction

The electrostatic interaction energy of two point charges q and Q separated by a distance

r is given by Coulomb’s law

Eel =
1

4πε0
· q ·Q

r
(V.1)

Of importance is the concept of electrostatic potential (ESP), induced at the point ~r by a

point charge Q located at ~r1:

Φ(~r) =
1

4πε0
· Q

|~r − ~r1|
(V.2)

17 Typically, the simulated molecular system consists from more than 90 % of water, so that more than 80 %

of the computational time is spent by calculating the forces among the (uninteresting) water molecules

around the (interesting) solute.
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If we know the electrostatic potential at a point ~r in space, then we can obtain the total

electrostatic energy of a charge q at this point:

Eel(~r) = Φ(~r) · q (V.3)

In this way, we can have an ‘electrostatic potential energy surface’ in analogy to mechan-

ics. There, if we know the topography of the Alps, then we immediately know the potential

energy of a person with a weight of 70 kg, at any point. In a similar way, if we know

the electrostatic potential induced by the atoms of a protein, then we can readily obtain

for instance the binding energy of a point charge (like a metal cation) at any place. The

electrostatic potential induced by a number of point charges Qi follows simply as a sum

Φ(~r) =
1

4πε0

∑

i

Qi

|~r − ~ri|
(V.4)

with the energy of a point charge q at ~r given by Eq. V.3.

In case of a continuous charge distribution, we have to consider the charge density ρ =

Q/V , with ρ(~r) being the charge density at the point ~r. Then, Qi = ρ(~ri) · Vi = ρ(~ri) ·∆V
is the charge in the i-th volume element Vi. Summing over all elements, one obtains

Φ(~r) =
1

4πε0

∑

i

ρ(~ri) ·∆V
|~r − ~ri|

(V.5)

If we make the volume elements infinitesimally small, this changes to (with d3~r = dV )

Φ(~r) =
1

4πε0

∫
ρ(~r1)

|~r − ~r1|
d3~r1 (V.6)

Finally, the electrostatic energy of a charge distribution ρ(~r) follows as

E =
1

2

∫
Φ(~r) · ρ(~r) dV =

1

8πε0

∫∫
ρ(~r1) · ρ(~r)
|~r − ~r1|

d3~r d3~r1 (V.7)

The main task is to get the electrostatic potential from a charge distribution. For that,

one has to solve Poisson’s equation

∇2Φ(~r) = −ρ(~r)
ε

(V.8)

(differential equation for Φ as a function of ~r), or, if the permittivity ε is not constant,

∇ (ε∇Φ(~r)) = −ρ(~r) (V.9)
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As an example let us have a look at the ESP of a gaussian charge distribution. This

distribution centered around the origin of coordinate system with a width σ is given as

ρ(r) = Q · 1

σ3
√
2π

3
· exp

[
r2

2σ2

]
(V.10)

The corresponding solution of the Poisson equation is

Φ(r) =
1

4πε
· Q
r
· erf

[
r√
2σ

]
(V.11)

with erf being the error function. Here, if we move far enough from the center of the charge

distribution (r is large), the error function converges to unity and the ESP is very near to

that of a point charge placed in the origin (Eq. V.2). This is in accord with experience –

a point charge and a well-localized charge distribution interact with distant charges in the

same way. Actually, we need not go so far in order to see that – the error function assumes

a value of 0.999 already at the distance of 2.4σ.

B. Periodic boundary conditions

The most frequent objective of MD simulations is to describe a molecular system in

aqueous solution. The problem that we readily encounter is that we have to make the system

as small as possible, in order to reduce the computational cost. The most straightforward

way to do so is to consider only a single molecule of the solute (e.g. a protein or DNA

species) with a smallest possible number of solvent (water) molecules. A typical size of such

a system with several thousand water molecules is in the range of units of nanometer. Here,

a serious issue occurs: while we are trying to describe the behavior of a molecule in bulk

solvent, every point in such a small system is actually very close to the surface. The surface

layer of a system has always properties very different from those of the bulk phase, and with

such a setup, we would simulate something else that what we aim at.

An elegant way to avoid this problem is to implement the periodic boundary con-

ditions (PBC). Here, the molecular system is placed in a box with a regular geometrical

shape (the possibilities are listed below). This polyhedron is virtually replicated in all spa-

tial directions, with identical positions (and velocities) of all particles, as shown in Fig. 20.

This way, the system is made infinite – there is no surface in the system at all. The atoms

in the vicinity of the wall of the simulation cell (like the black circle in Fig. 20) interact

with the atoms in the neighboring replica.
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FIG. 20: Replication of the unit cell (grey) using periodic boundary conditions. Interactions of an

atom (black) with the nearest images of all other atoms (red).

This method is not quite perfect as it introduces artificial periodicity in the system – all

the replicas of the simulation cell look the same, making the thermodynamics of the system

incorrect in principle.18 However, this treatment is much better than simulating a too small

system with artificial boundary with vacuum.

Practically, the implementation has the following features:

• Only the coordinates of the unit cell are recorded.

• If a particle leaves the box, then it enters the box from the other side.

• Carefull accounting of the interaction of the particles is necessary. The simplest ap-

proach is to make an atom interact only with the N − 1 particles within the closest

periodic image, i.e. with the nearest copy of every other particle (minimum image

convention). This is to avoid the interaction of an atom with two different images of

another atom, or even with another image of itself. If the box is cubic with boxsize

L, then each atom can interact only with all atoms closer than L/2. Evidently, PBC

have to be synchronized with the applied cut-offs, see below.

The unit cell may have a simple shape – cubic or orthorhombic, parallelepiped (specially,

rhomboeder), or hexagonal prism; but also a more complicated like truncated octahedral

18 For instance, the entropy of the entire system is obviously too small, because of its (wrong) translational

symmetry. As a general rule, this is rarely a problem.
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or rhombic dodecahedral. In the latter two cases, the corresponding PBC equations are

quite complicated; the advantage of such shapes for the simulation of spherical objects (like

globular proteins in solvent) is that there are no voluminous distant corners which increase

the amount of solvent and thus the computational complexity (like in the case of cubic

/orthorhombic box). Two-dimensional objects like phase interfaces are usually treated in a

slab geometry.

FIG. 21: Truncated octahedron (left) and rhombic dodecahedron (right).

C. Accelerating the calculation of non-bonded interactions – cut-off

As mentioned above, the evaluation of non-bonded terms becomes a bottleneck for large

molecular systems, and in order to make simulations of extended systems possible, it is

necessary to limit their computational cost.

The simplest and crudest approach is to neglect the interaction of atoms that are further

apart than a certain distance rc. This so-called cut-off is commonly used with the rapidly

decaying (1/r6) Lennard-Jones interaction, which indeed nearly vanish already for moderate

distances rc, commonly around 10 Å. However, with the slowly decaying electrostatic inter-

action (1/r), this would lead to a sudden jump (discontinuity) in the potential energy; even

worse, this would be a disaster for the forces, which would become infinite at that point.

A better idea would be to shift the whole function by V (rc), so that there is no jump at

rc anymore. We would have

V sh(r) =





V (r)− V (rc), for r ≤ rc,

0, otherwise.
(V.12)

However, the gradients (forces) are at rc still not continuous! To eliminate this force jump,
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it is possible to apply a shift-force potential (V ′ ≡ dV/dr):

V sf(r) =





V (r)− V (rc)− V ′(rc) · (r − rc), for r ≤ rc,

0, otherwise.
(V.13)

The obvious drawback of this method is that the Coulomb energy is changed!

FIG. 22: Electrostatic interaction energy of two unit positive charges, evaluated using Coulomb’s

law and the various modifications.

A further alternative is the switch potential. Here, an additional potential is applied

starting from a certain distance r1, which brings the Coulomb interaction gradually to zero,

as shown in Fig. 22. The drawback of this method is, that the forces are altered in the

cut-off region.

Both methods can be applied to either the energy or the forces: when applied to the

energy, the forces follow through differentiation, and vice versa, when applied to forces, the

energy follows through integration.

Generally, the cut-off schemes can be based either only on atomic distances, or on func-

tional groups. Usually, the latter is employed to assure charge conservation in the Coulomb

interaction.
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D. Accelerating the calculation of electrostatic interactions – Ewald summation

In many cases, above all if highly charged molecular systems (like DNA or some proteins)

are simulated, the use of cut-offs is a bad approximation. For instance, the artificial forces

if using a switching function may lead to the accumulation of ions in the regions of solution

in the cut-off distance (measured from DNA). Therefore, it is desirable to abandon the

minimum image convention and the cut-offs, and rather sum up the long-range Coulomb

interaction between all the replicas of the simulation cell

Let us introduce a vector ~n, which runs over all the replicas of the cell, denoting them

uniquely:

• For |~n| = 0, we have ~n = (0, 0, 0) – the central unit cell.

• For |~n| = L, we have ~n = (0, 0,±L), ~n = (0,±L, 0), ~n = (±L, 0, 0) – the six neigh-

boring unit cells.

• Further, we continue with |~n| =
√
2 ·L and the 12 cells neighboring over an edge, etc.

With this vector, we can write the sum of Coulomb interactions over all replicas as

ECoul =
1

2

∑

i,j

∑

images~n

qi · qj
| ~rij + ~n| (V.14)

for indices i and j running over all atoms in the unit cell (rij is then their distance). This

expression is an infinite sum which has special convergence problems. Such a sum decays

like 1/|~n| and is a conditionally convergent series, meaning that it converges (
∑∞

i=1 ai <∞)

but does not converge absolutely (
∑∞

i=1 |ai| cannot be summed up). The problem is that the

convergence of such a sum is slow and, even worse, dependent on the order of summation.

So, a conditionally convergent series may add up to any (!) value, as shown in this example:

I : S = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ . . .

II :
1

2
S =

1

2
− 1

4
+

1

6
− 1

8
+ . . .

I + II :
3

2
S = 1 +

1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . .

= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . = S (sic!) (V.15)
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Therefore, we need a clever way to evaluate the potential resulting from the interaction

of all images of all charges

Φ(~ri) =
∑

j

∑

images |~n|

qj
| ~rij + ~n| (V.16)

in order to evaluate the Coulomb energy of the charges qi in the unit cell.

ECoul =
1

2

∑

i

qi · Φ(~ri) (V.17)

The idea of the Ewald methods is to convert the difficult, slowly convergent series to the

sum of two series, which both converge much more rapidly, like

∑ 1

r
=
∑ f(r)

r
+
∑ 1− f(r)

r
(V.18)

where
∑

1/r represents the difficult series that we have to deal with. Whereas the terms

on the right-hand side look more complicated, they actually exhibit a much more rapid

convergence than
∑

1/r in our case, and such an awkwardly looking ‘decomposition’ is the

preferred way to go.

Since the summing over point charges leads to convergence problems with conditionally

convergent sums, the Ewald method uses rather normal distributions of charge of the same

magnitude:

qj → qj ·
(
α√
π

)3

exp
[
−α2 · |~rj|2

]
(V.19)

To get the electrostatic potential induced by this smeared charge distribution, Poisson’s

equation (Eq. V.8) has to be solved. This leads to the potential being represented by the

so-called error function:19

Φ(~r) = qj ·
erf [α · r]

r
(V.20)

19 The error function is defined as the definite integral of the normal distribution

erf[x] =
2√
π

∫ x

0

exp[−t2] dt

and the complementary error function as

erfc[x] = 1− erf[x]

57



V Non-bonded interactions 58

and, in the special case of ~r = ~o:

Φ(~o) = qj ·
2α√
π

(V.21)

If we sum up the potentials given by Eq. V.20 for all charges, we obtain

Φ(~ri) =
∑

j

∑

images |~n|
qj ·

erf [α · | ~rij + ~n|]
| ~rij + ~n| (V.22)

This has to be compared with the potential induced by the point charges (Eq. V.16). The

difference between Eq. V.16 and Eq. V.22 is given by the complementary error function.

The genuine potential induced by the point charges can then be expressed as

Φ(~ri) =
∑

j

∑

images |~n|
qj ·

erfc [α · | ~rij + ~n|]
| ~rij + ~n| (V.23)

+
∑

j

∑

images |~n|
qj ·

erf [α · | ~rij + ~n|]
| ~rij + ~n| (V.24)

The first term V.23 called the real-space contribution is shown graphically in Fig. 23

(top). From a certain (quite small) distance, the point charges and the gaussian charge

distributions (with opposite signs) cancel each other. This distance depends on the gaussian

width α – a small gaussian width would lead to a rapid convergence.

FIG. 23: Top: Real-space contribution to the Ewald sum consists of the original point charges

(red) and gaussian charge distributions (blue) of the same magnitude but opposite sign. Bottom:

Reciprocal-space contribution.

On the other hand, the second term V.24 called the reciprocal-space contribution is best

evaluated in the form (~k – the reciprocal lattice vector of periodic images)

Erec =
1

2V ε0
·
∑

~k 6=~o

1

~k2
· exp

[
−|
~k|2
4α2

]
·
∣∣∣∣∣
∑

j

qj · exp[−i · ~k · ~rj]
∣∣∣∣∣

2

(V.25)
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The usually applied Fourier transform techniques20 need a large gaussian width α for fast

convergence, therefore the value of α is a necessary compromise between the requirements for

the real- and reciprocal-space calculations. All in all, both mentioned contributions exhibit

quite favorable convergence behavior, making the evaluation of the electrostatic potential

due to all periodic images feasible.

After calculating these two terms (Fig. 23), yet another one has to be taken into account:

Since we have broadened charge distributions, they do interact with themselves, as shown

in Fig. 24. This interaction has been brought about by the substitution of point charges by

gaussian charge distributions, and thus it must be subtracted from the final result.

FIG. 24: Interaction of the charge with the gaussian distribution

The potential of a broadened gaussian is given by Eq. V.21, which leads to Coulomb

energy of

Eself =
∑

j

qj · Φ(~o) =
∑

j

qj · qj ·
2α√
π

(V.26)

At the end, we have three energy contributions: one from the ‘real-space’ evaluation of

Φreal in Eq. V.23, which gives

Ereal =
1

2

∑

j

qj · Φreal(~rj) (V.27)

one from the ‘reciproal-space’ evaluation of Φrec in Eq. V.25 and the ‘self-energy’ in Eq. V.26,

so that

EEwald = Ereal + Erec − Eself (V.28)

20 A popular implementation is the FFTW (Fastest Fourier Transform in the West), with a favorable com-

putational cost scaling as O(N · lnN).
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E. Explicit solvent models – water

The most simulations of biomolecules are performed with water as the solvent, to mimic

the physiological or in vitro experimental conditions. If a not too concentrated solution is to

be simulated, then the necessary amount of the solvent is quite large, often many thousand

molecules.

For instance, in a typical simulation of a DNA oligomer with ten base pairs (see Fig. 25),

the dimensions of the PBC box are 3.9× 4.1× 5.6 nm, and there are 630 atoms in the DNA

molecules, 8346 atoms of water and 18 sodium counterions. The macroscopic concentration

of DNA in this ‘sample’ reaches an astonishingly large value of 18 mmol/L!21 At the same

time, 86 % of all pair interactions are those where each of the partner atoms belongs to a

water molecule,22 and the most remaining interactions involve one atom of water. This is a

huge portion, and the smallest possible at the same time, as we have the minimal number

of water molecules.

FIG. 25: Typical setup of the simulation of a DNA oligomer.

We can see that the most interactions involve water, and that is why it is necessary to

turn our attention to the description of water in the simulations. The model of water must

be made simple enough in order to reduce the computational complexity, but at the same

time it is necessary not to compromise the accuracy of the description.

21 Due to the commonly accepted criteria, such a box is the smallest possible. Thus, the amount of water is

also the smallest possible, and the concentration the highest possible.
22 There are 8346 water atoms, that is roughly 83462 interactions water–water, and 8994 atoms altogether,

corresponding to 89942 pair interactions. The ratio of these figures is 0.86.
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Many simple water models have been developed so far. They are usually rigid, so that

the bond lengths as well as angles remain constant during the simulation. A molecule is

composed of at least three sites (corresponding to atoms in this case), but possibly also as

many as six sites – three atoms and optional dummy particles corresponding to a ‘center’ of

electron density, or to the lone electron pairs on the oxygen atom.

The most frequently used atomic model of water is the TIP3P (very similar is the SPC).

A TIP3P molecule consists of three atoms connected by three rigid bonds. A charge is

placed on every atom (−0.834 on the O and +0.417 on the Hs), while only the oxygen atom

possesses non-zero Lennard-Jones parameters.23

If the negative charge is placed on a dummy atom M rather than on the oxygen, then

the electric field around the molecule is described better. This idea is implemented e.g. in

the TIP4P model.

A further improvement may be achieved if two dummy particles L bearing negative charge

are placed near the oxygen atom, to mimic the lone electron pairs. Consequently, such a five-

site model (like TIP5P) describes the directionality of hydrogen bonding and derived effects

(radial distribution function, temperature of highest density) better than less sophisticated

models.

23 This makes it possible to additionally optimize the algorithm for the calculation of energy and forces.
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VI. PRINCIPLES OF STATISTICAL MECHANICS

In the last chapters, we often used the notion that a particular ensemble generated by a

simulation does not represent the canonical ensemble. This means that the phase space is

sampled differently in the simulation than what would correspond to the canonical ensemble.

But what does the canonical probability distribution function look like? Let us first

have a look to the microcanonical ensemble.

Interestingly, the statistics is simpler for quantum mechanics (QM) than for classical me-

chanics (CM). The reason is that in QM, we can talk about discrete states, while everything

in CM is continuous. In CM, have to select small volumes of phase space and calculate the

density there. On the other hand, in QM, we can use for instance the discrete energy states

of molecules or quantum oscillators as simple examples, as we will do in the following.

A. Microcanonical ensemble – microstates for constant energy

If the energy of the system is the same for every microstate, then we assume that every

microstate of the system occurs with the same probability. With microstate we understand

the particular distribution of energy among the particles in the system. Another important

concept is that of the configuration or macrostate, which is defined by the occupations of

energy level by the individual indistiguishable particles — see Fig. 26 for an explanation.

FIG. 26: A system of three particles with two available energy levels. In one of the possible

configurations (left), two indistinguishable particles (grey) occupy the level E1 while the remaining

one sits on the level E2. This configuration is composed of three microstates (right) which differ

in the exact distribution of particles (with various symbols) among the energy levels.

The important point is that since all microstates have equal probabilities, the probability

of a configuration is given by the number of microstates that correspond to the configuration.

Thus, if we wish to know the probability of a configuration, we have to count the microstates
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that compose the configuration.

1. Example – counting the microstates

Consider a system of three particles that possess three identical energy quanta altogether.

These three energy quanta can be distributed as shown in Fig. 27. We find ten microstates

and three classes of systems, which we shall call configurations A, B and C:

Now, we wish to count, in how many ways we can distribute the energy quanta, thus how

many microstates we have. In principle, we will do it in the following way: One particle

obtains l quanta, the next m, and the last one n quanta of energy, where l +m+ n = 3.

FIG. 27: Possible microstates with three energy quanta in the system.

There are three possibilities to divide three energy quanta between three particles: (3,0,0),

(2,1,0) and (1,1,1) — these are the configurations A, B and C, respectively. For every

configuration, we have now to assign the quanta spcifically to the individual particles. This

runs as follows:

• We start by pick a first particle and giving it the largest number of energy quanta in

the configuration. We have 3 choices.

• Then, we assign the second-largest number of quanta to another particle. There are 2

choices.

• There is only 1 choice particle left to accomodate the smallest number of quanta.
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• This makes 3 · 2 · 1 = 3! = 6 choices in total, for the given configuration.

However, there are some degeneracies, so that we do not always obtain six different mi-

crostates:

Config A: Let us give particle 1 three quanta. Then, it does not matter if we choose particle 2 first

to obtain zero quanta and particle 3 next, or particle 3 obtains zero quanta first and

article 2 follows. The result is the same as seen in Fig. 27. There are two particles that

obtain the same number of quanta, and two assignements are thus indistingushable,

leading to an identical result. However, we have counted both ways, and to obtain

the right number of microstates we have to divide by 2 · 1 (two times one redundant

assignment). The number of microstates is thus

3!

2!
= 3

Config B: All three particles are given a different number of quanta, so that no degeneracy

actually occurs. The number of possibilities to distribute the quanta is thus truly

3! = 6

Config C: Trivially, there is only one microstate for this configuration. In detail, we have to

assign the particles three identical numbers of energy quanta, and so we obtain the

number of microstates by dividing by 3!:

3!

3!
= 1

Thus, there are ten microstates for our system; these have been already presented in Fig. 27.

2. Number of microstates for a configuration; the dominating configuration

Generally, if there are N particles, then there are N ways to pick the first, N − 1 ways to

pick the second etc. Thus, we have N ! ways to build up the system. But then, if na particles

have to accomodate the same number of energy quanta, then the real number of different

microstates is obtained by dividing by na!. Then, we find the number of microstates W for

a system of N particles in a certain configuration as

W =
N !

na! · nb! · . . .
(VI.1)
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with ni being the numbers of particles accommodating the same number of energy quanta,

which we shall also call occupation numbers of the energy levels.

For a large number of particles N , W follows as an extensively large number, and thus it

is practical to consider the logarithm of it:

lnW = ln
N !

na! · nb! · . . .
= ln[N !]− ln[na!]− ln[nb!]− . . . = ln[N !]−

∑

i

ln[ni!] (VI.2)

and using Stirling’s approximation ln a! = a · ln a− a we find

lnW = N · lnN −
∑

i

ni · lnni (VI.3)

We may introduce the fraction of particles in state i, or the probability of a particle to

be found in state i, as

pi =
ni

N
(VI.4)

Then, it follows that

lnW =
∑

i

ni · lnN −
∑

i

ni · lnni = −
∑

i

ni · ln
ni

N
= −N ·

∑

i

pi · ln pi (VI.5)

Now, we can calculate the number of microstates corresponding to a given configuration.

The crucial point is now to find out which configuration has the largest weight, in other words,

is the most likely. This will be the configuration with the largest number of correspoding

microstates — the task is thus to find the maximum of W as the function of occupation

numbers ni.
Method of Lagrange multipliers:

We want to find the maximum of a function f(~x) under the condition that cer-

tain constraints yk(~x) = 0 are fulfilled. Then, we can search for the maximum

by taking these constraints into account in the following way:

∂

∂xi

(
f(~x)−

∑

k

λk · yk(~x)
)

= 0

∂

∂λi

(
f(~x)−

∑

k

λk · yk(~x)
)

= 0 (VI.6)

with xi running over the components of ~x. So, we add the constraints to the

function and set all the derivatives to zero, as usually.
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This may be applied to the microcanonical ensemble: We are looking for the configuration

with maximum weight of a system of N particles distributed among energy levels εi, with

the total energy E. Subject to maximization is then the weight

lnW = N · lnN −
∑

i

ni · lnni (VI.7)

under the normalization conditions

∑

i

ni −N = 0 (VI.8)

∑

i

ni · εi − E = 0 (VI.9)

which express the constant number of particles and the constant energy.

The application of Lagrange’s method leads to the equations

∂

∂ni

[
lnW + α ·

(
∑

j

nj −N
)
− β ·

(
∑

j

nj · εj − E
)]

= 0 (VI.10)

∂ lnW

∂ni

+ α− β · εi = 0 (VI.11)

once we used −α and β for the Lagrange multipliers. This leads to the solution

ni

N
= exp [α− β · εi] (VI.12)

where the parameter α may be obtained from the condition VI.8 as

expα =
1∑

j exp[−β · εj]
(VI.13)

so that

ni

N
=

exp[−β · εi]∑
j exp[−β · εj]

(VI.14)

In the microcanonical ensemble, the parameter β might be estimated from the condition

VI.9 in the form

E

N
=

∑
j εj · exp[−β · εj]∑

j exp[−β · εj]
(VI.15)

An important observation is that if the number of particles N is huge, there is always

one configuration with weight much larger than that of all other configurations. This domi-

nating configuration then actually determines the properties of the system. The occupation

numbers ni obtained above correspond to such a dominating configuration.
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B. Microscopic definition of entropy

The configurations pi =
1
N
, 1
N
, 1
N
, . . . and pi = 1, 0, 0, . . . are the extreme cases. In the

former case, lnW is maximal (for large N)

lnW = N · lnN

whereas in the latter case it is minimal

lnW = ln 1 = 0

We define the microscopic entropy as

S = −kB · lnW (VI.16)

where the universal constant kB is the so-called Boltzmann constant. This property tells

us something about the travel of the system through the configuration space. If entropy

is small, few states are occupied; if it is large, then many states are occupied. We may

see the requirement of the maximal number of microstates corresponding to the optimal

configuration in the microcanonical ensemble as the requirement of maximal entropy.

Entropy can be related to the order in the system. If entropy is small, only a small

part of the configuration space is accessible, and we consider the system to be ordered. On

the other hand, if entropy is large, an extended part of the configuration space is covered.

Think of the books on your desk. When they are all stapled on one place on your desk,

you consider this state to be ordered, while when they are freely distributed over the entire

room, you would probably call this state disordered.24

There is also another route to the entropy, via the so-called information entropy. If

entropy is minimal, we have perfect knowledge about a system — it is in the state i because

pi = 1. If entropy reaches its maximum, we have no information at all, as every possibility

is equally likely. Think again of the books in your room: if S = 0 then p1 = 1 and you know

that a particular book is on your desk. If S = kB · lnN , you know that the book is in one

of the N possible places in your room. In this case, you have no idea where to look first!

24 Jan Černý (Charles University in Prague, Department of Cellular Biology) once coined the term anthropy

for “entropy of human origin” as is the case of the books on your desk.
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Second law of thermodynamics

The second law claims that entropy increases in every irreversible process:

∂

∂t
S ≥ 0.

For a closed system, the microscopic entropy does not have this property. This

can be most easily seen in a quantum mechanical example:

Consider particles in a box with a wavefunction Ψ, for which we solve the

Schrödinger equation

−i~Ψ̇ = ĤΨ

We can expand this in the set of eigenfunctions of the box φi

Ψ =
∑

i

ciφi

to get

−i~Ψ̇ = ĤΨ

−i~ · ciφ̇i =
∑

j

cjHijφj

We see that the probability to find the particle in state φi

pi = |ci|2

does not change during the dynamics:

ṗi = 0

This leads to the entropy change of

∂

∂t
S = kB ·

∂

∂t

(
−kB

∑

i

pi · ln pi
)

= 0

The microscopic equations do not lead to any change in entropy, in contradic-

tion with the second law. Yet, we can understand that this has to be so: We

know the initial conditions of a system pi. Then, since our equations of motion

are perfectly deterministic, we know how every trajectory evolves — we know

pi at every instant! This way, the change of information entropy is zero!

In the example of your books on the desk. Initially, they are all on the desk.

Since you know all the equations of motion of every book, you know exactly

where every book is at any later time T. So, you have perfect knowledge of

68



VI Principles of statistical mechanics 69

C. Canonical ensemble – system in equilibrium with the environment

For the microcanonical ensemble, we optimized lnW , and so looked for the configuration

of probabilities pi such that gave the largest number of states, which maximized the entropy.

In our example, W was the number of microstates for a certain configuration of particles

over the energy states εi in the system (ε1, ε2, . . .). We saw that for the occupation numbers

(2,1,0) in the conformation B we got the largest number of states. This was the dominating

configuration in the sense that the most microstates belonged to it. Therefore, if we wanted

to know the configuration with the largest number of microstates, we had to vary the ni in

order to maximize lnW . And this was the most probable configuration.

Now, we shall consider the system to be in contact with the environment. Under such

circumstances, it is the temperature rather than energy that remains constant. The famous

Boltzmann distribution of pi

pi =
exp[−β · εi]∑
j exp[−β · εj]

(VI.17)

is valid, with the denominator

Q =
∑

j

exp[−β · εj] (VI.18)

being designated as the canonical partition function (Zustandssumme).

To derive what β means, we have to remember some basic thermodynamics: The energy

as the basic thermodynamic potential depends on the extensive variables entropy, volume

and number of particles:

E = E(S, V,N) = TS − pV − µN (VI.19)

Therefore, the thermodynamic temperature comes into play by means of

∂E

∂S
= T or

∂S

∂E
=

1

T
(VI.20)

Now, we can use the microscopic definition of S to calculate

1

T
=
∂S

∂E
=
∂S

∂β
· ∂β
∂E

= −kB ·
∑

i

∂pi
∂β

(−βεi − lnQ) ·
(
∑

i

∂pi
∂β

εi

)−1

= kB · β (VI.21)

when using
∑

i

∂pi
∂β

=
∂

∂β

∑

i

pi =
∂

∂β
1 = 0
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Finally, we have

β =
1

kBT
(VI.22)

For continuous systems, the spacing between the energy levels becomes infinitesimally

small and we can write

ρ(~r, ~p) =
1

Q
· exp

[
−E(~r, ~p)

kBT

]
(VI.23)

with the canonical partition function

Q =

∫
exp

[
−E(~r, ~p)

kBT

]
d~r d~p (VI.24)

D. Canonical partition function – the way to the thermodynamic quantities

The partition function Q seems to be a purely abstract quantity, but the very opposite

is true! In order to characterize the thermodynamics of a system, we need just to evaluate

Q and the desired thermodynamics observable follow as functions of Q, in principle. This

illustrates the purpose for which the statistical thermodynamics has been developed: it

makes us able to derive the (macroscopic) thermodynamic properties of a system from the

knowledge of (microscopic) properties of the molecules that compose the system, with the

partition functions connecting the microscopic and the macroscopic.

As an example, we may calculate the mean total energy of a system from the dependence

of canonical partition function Q on the parameter β or the temperature T :

〈E〉 = −∂ lnQ
∂β

= kBT
2 · ∂ lnQ

∂T
(VI.25)

E. Exercises

1. You have 20 (identical) cookies and six boxes (for six of your friends, which makes

the boxes distinguishable). How many possibilities do you have to distribute them as

follows: {1,0,3,5,10,1} (this is the distribution of cookies in the 6 boxes). Use Eq. VI.1.

2. Prove Eq. VI.21.

3. Calculate the average energy of the classical harmonic oscillator using the Boltzmann

distribution.
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VII. THERMODYNAMIC PROPERTIES OF MOLECULAR SYSTEMS

We got to know the principles of statistical mechanics and its significance as the way

from the properties of particles to the thermodynamic properties of ensembles. The role of

the mediator of information is played by the partition function.

In this chapter, we will see

• how the thermodynamic equilibrium is characterized, which quantities are of interest

and how these may be derived from the partition function,

• how the partition function is connected to the phase-space density,

• how the ensemble partition function may be derived from the partition function of a

single molecule,

• that MD simulation provides an alternative way to thermodynamic quantities,

• that it is difficult to obtain free energies from normal simulations.

A. Driving forces of thermal processes. Equilibrium

Classical thermodynamics introduces the concepts of thermodynamic equilibrium and

spontaneous process, and identifies the quantites that are maximized/minimized in the equi-

librium and show a definite change in the course of a spontaneous process.

So if the system does not exchange energy with the surroundings, as is the case in the mi-

crocanonical ensemble, the equilibrium is reached if entropy S is maximized. Consequently,

a process proceeds spontaneously if it introduces an increase of entropy (∆S > 0).

The case of microcanonical ensemble is simple as there is no exchange of energy with the

surroundings, but the situation is more complex if we pass to the canonical ensemble. Here,

it is necessary to consider a super-system composed of the system of interest together with

the surroundings, once we wish to identify the equilibrium and the spontaneity of processes.

Of course, it is near-to-impossible to estimate the entropy of such a super-system, as we

cannot handle the whole universe in a calculation. Thus, an alternative criterion has to be

sought.
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A way to concentrate on our molecular system and to be able to omit the surroundings,

is to introduce a new thermodynamic function. In case of the canonical ensemble, the key

function is the Helmholtz free energy

F = U − TS (VII.1)

The equilibrium state in canonical ensemble exhibits a minimum of Helmholtz energy, and

F decreases in the course of a spontaneous process.

This is the fundamental property we are intersted in, because

• F = F (T, V ): F depends on the variables T and V , which are experimentally control-

lable, while U = U(S, V ) depends on S and V . We have no means to control entropy

in experiments. In particular, F is the energetic property which is measured when T

and V are constant, a situation we often model in our simulations.

• ∆F = Ff −Fi = Wmax is the maximum amount of work that the system can perform

between an initial (i) and final (f) state. In the first law dU = δQ+ δW , we can cast

in a formulation of the second law TdS ≥ δQ to obtain25

dU ≤ TdS + δW

and for the amount of work

δW ≥ Wmax = dU − TdS = dF

Therefore, the work is always greater or equal the change of free energy.26 In other

words, a certain amount of internal energy dU can never be converted to work, because

a part of it is always lost as an increase of entropy.

• In principle, energy minimization as we have discussed before, does not make any

sense. The energy is simply conserved, but within the entire universe (the universe

thus samples a microcanonical ensemble). Once we have defined a quantity like free

energy, the idea of a minimization procedure is restored: Systems will evolve in order

to minimize the free energy; however, this is nothing else than the maximization of

entropy of the super-system (universe).27

25 This unequality becomes an equality for a reversible process.
26 Note that if the system performs work, then the value of δW is negative. So, the value of Wmax is the

most negative possible, and its magnitude represents truly the maximum possible work.
27 In an NPT ensemble, the same role is played by the Gibbs free energy G = H − TS = U + pV − TS.
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B. Thermodynamic functions from statistical mechanics

Now, we want to apply the formalism to calculate enthalpies and free energies of

molecules. The main trick we learned is, that we only have to calculate the partition

function Q, since from there we get all thermodynamic functions:

U = 〈E〉 = kBT
2 ∂ lnQ

∂T
(VII.2)

S = kBT ·
∂ lnQ

∂T
+ kB · lnQ (VII.3)

F = −kBT · lnQ (VII.4)

P = kBT ·
(
∂ lnQ

∂V

)

T

(equation of state) (VII.5)

H = U + pV (VII.6)

G = F + pV = H − TS (VII.7)

Therefore, the computational problem reduces to the need to determine Q.

The problem of evaluation of the partition function may be greatly simplified for two

special cases. If the system is composed of n identical distinguishable particles, as is the

ideal crystal, then the ensemble partition function Q is obtained from the molecular partition

function q as

Q = qn (VII.8)

In the other case, if the n particles composing the system are identical and indistinguishable,

as in the gas phase, then another relation is valid:

Q =
qn

n!
(VII.9)

Note the immensely reduced need of effort that we have to make in these cases: It is only

necessary to evaluate the molecular partition function q for one molecule of the substance

in the studied system, and we obtain directly the thermodynamic quantities of interest, via

the ensemble partition function Q.
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C. Discrete and continuous systems

Discrete systems

In the chapter about statistical mechanics, we considered a (typically, but not necessarily)

quantum-mechanical system, i.e. a system with discrete energy levels Ei. For that, we found

a partition function

Q =
∑

i

exp[−βEi] (VII.10)

and a (discrete) Boltzmann distribution function

pi =
1

Q
exp[−βEi] (VII.11)

which is the probability to find the system in state i with energy Ei.

A prominent example is the harmonic oscillator with energy levels

Ei =

(
i+

1

2

)
· ~ω (VII.12)

FIG. 28: States of a quantum-mechanical harmonic oscillator. The thermal distribution of energy

over the vibrational states leads to the number of microstates and a value for the entropy/free

energy.

Continuous systems

On the other hand, we discussed the dynamics of molecules, where temperature allows

to sample a certain part of the conformational space of a protein. This means, that at a

certain temperature only certain values of the coordinates (xi) and also only certain values

of momenta (pi, cf. the Maxwell distribution) are reached, and thus only a part of the

phase space is sampled. The phase space density ρ(~r, ~p) gives the probability to find

a system at positions ~r and momenta ~p. Now, since we force the dynamics to generate a

canonical ensemble, we know the following:
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FIG. 29: Complex energy landscape E(x, p). Note that the p-axis is not shown; for p = 0, the

system ‘lies’ on the potential energy curve (black line); for p > 0, various trajectories (sampling

various phase-space volumes) are accessible indicated by the blue and red curves.

• Every point in the phase space has potential energy depending on the coordinates ~x

(V = V (~x)), coming from the force field, and kinetic energy related to ~p. This way,

every point (~r, ~p) in the phase space is assigned a certain energy value.

• From the canonical distribution we know that the probability to find the system in a

state with energy E is

p(~r, ~p) = ρ(~r, ~p) =
1

Q
· exp

[
−E(~r, ~p)

kBT

]
(VII.13)

• To obtain the partition function Q, we now have to substitute the summation (in the

discrete case) by an integral over the entire phase space:

Q =

∫
exp

[
−E(~r, ~p)

kBT

]
d~x d~p (VII.14)

The canonical distribution function gives the probability of finding the system at a point

(~r, ~p) in the phase space. Typically, the system will be only sampling a part of the phase

space, with non-zero probabilities, as shown schematically in Fig. 30.

At the start of an MD simulation, we only know the form of the potential (force field) and

kinetic energy. The fundamental aim of MD simulations is to render the correct

phase-space density. Then, we obtain the thermodynamic potentials U , H etc. as time

averages, if the simulation is ergodic. However, this holds only if the phase-space density

is truly that of the canonical ensemble (if the simulation sampled the canonical ensemble

correctly); otherwise, the derivations in the last chapter would not be valid!
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FIG. 30: Part of the phase space, sampled during the dynamics. Right: example of a classical

harmonic oscillator.

Thus, we have the following agenda:

• Perform a MD to get a trajectory in phase space. We have to set up the simulation

in order to sample the canonical ensemble; for instance, we have to choose the right

thermostat! Only then will the distribution of points of the trajectory in the phase

space be the same as that given by the canonical distribution.

• Now we can use the ergodic theorem: The time series we get can be used to evalu-

ate time averages of thermodynamic quantities, which will be equal to the ensemble

averages of those.

In quantum chemistry, we commonly use both the discrete and the continuous situation,

to compute thermal corrections to the total energy E in order to get H, S, F or G. Here,

we consider the two situations as follows:

• If we have simple molecules (like benzene) with only one local minimum of energy, we

can use the harmonic approximation. The energy is given by the ground state energy

of the molecule plus the translational, rotational and vibrational contributions to the

energy. From the vibrational Hamiltonian we compute the Boltzmann distribution,

from that the partition function and then in turn the thermodynamic potentials.

• For molecules where a multitude of local minima can be reached, a single minimum

does not make sense any more. Here, we perform MD simulations to sample the phase

space appropriately and evaluate the time averages of the thermodynamic quantities

of interest.28

28 These will be equal to the ensemble averages due to the ergodic theorem.
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D. Vibrational contribution to the thermodynamic functions

Consider a simple molecule with one or only a small number of well characterizable

minima. For one of the minima, we can calculate the electronic energy (here: the force field

energy), the translational, rotational and vibrational energy, i.e. we have:

E = Eel + Etrans + Erot + Evib (VII.15)

The partition function follows as

Q = exp
[
−β
(
Eel + Etrans + Erot + Evib

)]
=

= exp[−βEel] · exp[−βEtrans] · exp[−βErot] · exp[−βEvib] =

= Qel ·Qtrans ·Qrot ·Qvib (VII.16)

Since we often need lnQ, we have:

lnQ = lnQel + lnQtrans + lnQrot + lnQvib (VII.17)

1. Electronic states

We usually consider the molecule to occupy the ground electronic state only, as the

electronic excitation energy is quite high. Then, we set the ground state energy arbitrarily

to zero (Eel(0) = 0) and the electronic partition function is equal to unity:

Qel = exp[−βEel(0)] + exp[−βEel(1)] + . . . ≈ 1 + 0 + . . . = 1 (VII.18)

This unity may be neglected in the product in Eq. VII.17.

2. Translational and rotational contribution

These contributions will not discussed in detail. They are calculated for the quantum-

mechanical particle in a box and for a quantum-mechanical rotator. One obtains

U trans =
3

2
kBT (VII.19)

U rot =
3

2
kBT (VII.20)

For both kinds of motion, also entropic contributions can be calculated. With those, we can

estimate free energies.
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3. Vibrational contribution

To get this contribution, we have to optimize the geometry of a molecule and calculate

its vibrational frequencies ωk. Each normal mode represents one harmonic oscillator k. For

example, a water molecule has three modes, k = 1, 2, 3. Every harmonic oscillator has

energy levels

Em
k = (m+

1

2
) · ~ωk (VII.21)

where E0
k = 1

2
~ωk is called the zero point vibrational energy. Let us evaluate the partition

function of one harmonic oscillator:29

Qk =
∞∑

m=0

exp

[
−β
(
m+

1

2

)
~ωk

]
= exp

[
−1

2
β~ωk

]
·

∞∑

m=0

exp [−βm~ωk] =

=
exp

[
−1

2
β~ωk

]

1− exp [−β~ωk]
(VII.22)

We can then derive the internal energy Uk

lnQk = −1

2
β~ωk − ln [1− exp[−β~ωk]] (VII.23)

Uk = −∂ lnQk

∂β
=

1

2
~ωk −

(
~ωk exp[−β~ωk]

1− exp[−β~ωk]

)
= ~ωk

(
1

2
+

1

exp[β~ωk]− 1

)
(VII.24)

We have to do this for the N − 6 vibrational degrees of freedom of the molecule — each

molecule thus consists of N − 6 harmonic oscillators. We then get for the internal energy

U =
N−6∑

k=1

Uk =
N−6∑

k=1

~ωk

(
1

2
+

1

exp[β~ωk]− 1

)
(VII.25)

The zero-point vibrational energy contributions are not temperature dependent, and they

are usually added to the electronic part of the energy (see above), so that the vibrational

part of the internal energy is defined merely as

Uvib =
N−6∑

k=1

(
~ωk

exp[β~ωk]− 1

)
(VII.26)

and for the corresponding entropy contribution and the Helmholtz free energy we find

Svib = kB lnQvib +
Uvib

T
=

N−6∑

k=1

(
~ωk

exp[β~ωk]− 1
− ln [1− exp[−β~ωk]]

)
(VII.27)

F vib = −kBT lnQ =
N−6∑

k=1

kBT ln [1− exp[−β~ωk]] (VII.28)

29 In the last step, we use the formula for the sum of geometric series (
∑

∞

k=0
xk = 1

1−x
).
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4. The PV term

To obtain the enthalpy H, we have to add the PV term to the internal energy. This term

would be difficult to estimate unless we did not adopt the approximation of ideal gas:

PV = NkBT (VII.29)

Then, we obtain the enthalpy and the Gibbs free energy:

H = U + pV = U +NkBT (VII.30)

G = F + pV = F +NkBT (VII.31)

Many quantum chemical as well as molecular mechanics programs (like Gaussian, respec-

tively CHARMM) perform a calculation of the thermal contributions by default, whenever

vibrational analysis is requested. (This is because the calculation of vibrational frequencies

is the most time consuming step and the evaluation of thermodynamic functions is done

virtually ‘for free.’)

E. Aiming at free energies

For a molecule with many conformations, we have to approach the phase-space density

with MD simulations (~r = {r1, . . . , r3N}, ~p = {p1, . . . , p3N}):

ρ(~r, ~p) =
exp[−βE(~r, ~p)]

Q
(VII.32)

which is the (canonical) probability of finding the system at the point (~r, ~p).

The central point now is, how long an MD simulation we can perform. If we integrate

the equations of motion for 1 ps, we will have 1,000 points in the trajectory; if we extend

it to 1 ns, we already have a million points etc. Here, a nanosecond is close to the limit of

what can be done!

Imagine we have simulated for 1 ps: Then, we will barely have sampled the points (~r, ~p)

for which ρ(~r, ~p) ≤ 1
1000

, meaning that any points with high energy will hardly be reached,

while the low-energy region may already have been sampled very well.

We get a problem if we are willing to calculate the averages:

U = 〈E〉 =
M∑

i=1

E(~r, ~p) · ρ(~r, ~p) (VII.33)
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FIG. 31: High-energy points B and C, which are badly sampled during the MD

Here, ρ(~x, ~p) tells us the relative probability of ‘visit’ of the particular point (~r, ~p), i.e. how

often the MD trajectory passes through this point. If we do not sample long enough, ρ will

vanish for points with large energies E(~r, ~p), and we will miss these large energies in the

average.

One could think, that since we miss large values, the average of any quantity will be

systematically wrong. However, for the internal energy this is not very serious, because the

canonical probability distribution

ρ(~r, ~p) =
exp[−βE(~r, ~p)]

Q
(VII.34)

is very small if the energy is high, and the neglect of such points brings on no error.

For free energies, however, the situation is much worse, as we can write

F = −kBT lnQ = kBT ln
1

Q
= kBT ln

[
c−1 ·

∫∫
exp[βE(~r, ~p)] · exp[−βE(~r, ~p)] d~r d~p

Q

]
=

= kBT ln

[∫∫
exp[βE(~r, ~p)] · ρ(~r, ~p) d~r d~p

]
− ln c (VII.35)

(where the complicated integral in the numerator on the first line is just a resolution of the

integral of unity, which corresponds to c−1 = (8π2V )N ; the canonical probability distribution

ρ was cast).

Now, we have a real problem, since the large energy values enter an exponential term in

the calculation of the free energy; the high-energy regions thus may contribute significantly.

So, if we have too few points in these high-energy regions, we may find large errors in the

calculated averages. Therefore, a really good idea is needed here to improve the sampling.
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