Computational Biophysics: atomistic simulations

I. Dynamics of complex structures

- protein folding
- molecular motors
- protein-DNA complexes

II. Transport: water, ions, protons, ...

III. Electron transfer

IV. Enzymes

- catalysis
- photochemistry

empirical potentials, statistical mechanics

Computational Biophysics: atomistic simulations

I. Dynamics of complex structures

- protein folding
- molecular motors
- protein-DNA complexes
- II. Transport: water, ions, protons, ...
- **III. Electron transfer**

IV. Enzymes

- catalysis
- photochemistry

quantum chemistry

Computational Biophysics: atomistic simulations

I. Dynamics of complex structures

- protein folding
- molecular motors
- protein-DNA complexes
- II. Transport: water, ions, protons, ...
- **III. Electron transfer**

IV. Enzymes

- catalysis
- photochemistry

quantum chemistry

Nuclear quantum effects, non-adiabatic dynamics

How to treat chemical reactions in proteins?

QM description needed

bioenergetics: proton transport

electron transport in DNA

biocatalysis: alcohol dehydrogenase

optical properties

Bioenergetics: bacterial photosynthesis

- 1) light absorption
- 2) proton transfer
- 3) ATP synthesis

Bacterial Reaction Center

- **ATPase** RC Reaktionszentrum
- photon absorption
- energy transfer
- electron transfer
- proton transfer
- Q_B movement: large structural transitions

-pumps proton in 5 steps along photocycle

structural
information from x-ray
IR/Raman/NMR
spectra

However: Complete bio-physical picture still missing

excited states, proton transfer: need QM

Methods

accuracy

Methods in the QC toolbox

accuracy

Semi-empirical /approximate methods

approximation, neglect and parametrization of interaction integrals from ab-initio and DFT methods

-HF-based:

CNDO, INDO, MNDO, AM1, PM3, MNDO/d, OM1,OM2 -DFT-based:

SCC-DFTB,

 \sim 1000 atoms, \sim ns MD

Spectrum of methods

Size and simulation time lime each other

Semi-empirical methods

Hartree-Fock (HF), Density Functional Theory (DFT) integrals

solution of linear equations

post-Hartree-Fock: MP2,CC, CI, MRCI ...

Semi-empirical methods

Hartree-Fock (HF), Density Functional Theory (DFT)

post-Hartree-Fock: MP2,CC, CI, MRCI ...

problem:

only 'one' (or few) structures

problem:

only 'one' (or few) structures

NEGLECTED:

- dynamics
- free energy vs potential energy

problem:

only 'one' (or few) structures

NEGLECTED:

- dynamics
- free energy vs potential energy

can be even more important than accurate total energy!

todays view on DFT

Still most important method and widely applied, however:

- too slow for many interesting problems:

100 atoms 10 ps

. . .

- too inaccurate for many interesting problems:

VdW interactions electronic excited states reaction energies (e.g. PT)

todays view on DFT

Still most important method and widely applied, however:

- too slow for many interesting problems:

100 atoms 10 ps

- too inaccurate for many interesting problems:

VdW interactions electronic excited states reaction energies (e.g. PT)

to model the variety of biological processes, one needs the WHOLE toolbox of QC, i.e.

. . .

faster AND more accurate methods

Characteristics of biological systems

Understanding the action of enzymes

(Warshel, Annu. Rev. Biophys. Biomol. Struct. 2003. 32:425-43)

• in most proteins: catalytic effect due to electrostatic interaction with protein environment!

less important:

- ,desolvation'
- steric effects
- ,near attac conformation' (NAC)
- ,coherent dynamics'

Understanding the action of enzymes

(Warshel, Annu. Rev. Biophys. Biomol. Struct. 2003. 32:425-43)

• in most proteins: catalytic effect due to electrostatic interaction with protein environment!

less important:

- ,desolvation'
- steric effects
- ,near attac conformation' (NAC)
- ,coherent dynamics'

- whole protein contributes to reaction barrier
- 'special design' in order to provide specific function

- whole protein contributes to reaction barrier
- 'special design' in order to provide specific function

- whole protein contributes to reaction barrier
- 'special design' in order to provide specific function

- whole protein contributes to reaction barrier
- 'special design' in order to provide specific function

- whole protein contributes to reaction barrier
- 'special design' in order to provide specific function

Process of vision

three color pigments, same chromphor:

what determines the absorption maximum?

'Spectral tuning'

Absorption over 300 nm "Tuning" due to protein environement (opsin-shift)

'Spectral tuning'

Absorption over 300 nm "Tuning" due to protein environement (opsin-shift)

'Spectral tuning'

Absorption over 300 nm "Tuning" due to protein environement (opsin-shift)

'Spectral tuning'

Absorption over 300 nm "Tuning" due to protein environement (opsin-shift)

=> `predefined' electrostatic
interactions determine function

3. Dynamics often very important

This is the total (potential) energy for one protein structure, but:

- the protein 'moves'
- entropy

'Problem' of total energy

Figure 1. Acylation reaction mechanism of acetylcholine catalyzed by AChE.

Zhang et al JPCB 107 (2003) 44459

'Problem' of total energy

A) one always has to 'average' (sample) over acessible protein conformations :
 total energy → inner energy
 E→ U
 B) entropy is often as important as accurate total enery E:
 U→ F

Two key problems

 include large part of system by treating some part at accurate QM level:

'multiscale issue'

- combine different methods
- quantum chemistry problem: what QM level?

find reaction pathway in complex environment, do the averaging and include entropic contributions
 'sampling issue' (same as in MM MD)

Hirachy of methods in theoretical chemistry

additional problems: environment and entropy

start: QC in gas phase environment: multiscale methods

Examples of multi-scale

Understanding biological processes

Different length- and timescales are relevant

- atomistic: equations of motion for coupled N-body problem (classical/quantum mechanical)
- coarse grained simulations: include several atoms into 'superatom'
- continuum: electrostatic and mechanical properties
- rate & transport equations, stochastic models etc.: phenomenological

- very different theoretical models
- combination (within limits): "Multi-scale modeling"

Multi-scale methods: used in different areas

AMMA: African Monsoon Multidisciplinary Analysis

Multi-scale methods: used in different areas

Multi-scale methods in computational materials science

Crack propagation in silicon

- quantum mechanics
- empirical force fields
- finite elements

Broughton et al PRB 60, 2391

,local ' information required

Polymers on metal surfaces

Biophysics: DNA-protein interaction

Membrane systems

P. Konig, N. Ghosh, M. Hoffman, M. Elstner, E. Tajhorshid, Th. Frauenheim, QC, J. Phys. Chem. A Trhular Issue, 110, 548-563 (2006)

Charge transfer through DNA

- system very large: 1000 atoms in DNA
- fluctuations important: MD for ns
- solvent explicitly required: put another 5000 atoms

Need QM description: NOT POSSIBLE

→ Coarse graining of the electronic problem

Charge transfer through DNA

Multiscale modelling

sequential: simulation with only one method

a) Get parameters : ,bottom up' parametrization

integrated : several methods combined

b) Even in a good model, often more accurate information is needed locally

e.g. crack propagation

c) atomistic simulations : long-range interactions

Combined QM/MM methods

Recent review: Senn & Thiel, Top Curr Chem (2007) 268: 173

Combined QM/MM methods

- 1976 Warshel und Levitt
- 1986 Singh und Kollman
- 1990 Field, Bash und Karplus

QM

- semi-empirical methods
- quantum chemistry : DFT, HF, MP2, LMP2
- DFT 'plane wave' codes: CPMD

MM

• CHARMM, AMBER, GROMOS, SIGMA, TINKER, ...

Recent review: Senn & Thiel, Top Curr Chem (2007) 268: 173

Combined QM-MM methods

-QM region

- Molecular Mechanics (MM) region

Effects:

- **steric interactions**: keep the active site in place:

electrostatic interaction:
 polarization of QM region due
 to MM

Recent review: Senn & Thiel, Top Curr Chem (2007) 268: 173

Main distinction between QM/MM methods

- additive vs. subtractive methods
- embedding: mechanic, electrostatic or polarizable
- treatment of the boundary:
 - link atom, pseudo atom, hybrid orbitals
 - electrostatics

Subtractive vs. additive models

- subtractive: several layers: QM-MM

double-counting of the regions is subtracted

 additive: different methods in different regions + interaction between the regions

Subtractive QM/MM: ONIOM

Morokuma and co.: GAUSSIAN

Additive QM/MM

Subtractive vs. additive QM/MM

parametrization of methods for all regions required
 e.g. MM for Ligands
 SE for metals

+ QM/QM/MM conceptionally simple and applicable

Main distinction between QM/MM methods

- additive vs. subtractive methods
- embedding: mechanic, electrostatic or polarizable
- treatment of the boundary:
 - link atom, pseudo atom, hybrid orbitals
 - electrostatics

Embedding

broken bond

Add these terms at the boundary

VdW terms

Mechanical embedding

$$\hat{H}_{QM/MM} = \left[\sum_{\alpha,M} \left\{ \frac{A_{\alpha M}}{R_{\alpha M}^{12}} - \frac{B_{\alpha M}}{R_{\alpha M}^{6}} \right\} + \hat{H}_{QM/MM}^{\text{int.coor}} \right]$$

QM-MM interaction only via

via VdW parameters and force field terms for bonds at boundary as inherited from MM

==> active site is kept in
place, but NO electrostatic
interaction!!!

This, however, is crucial in biological systems!

this describes the polarization of QM wavefunction ψ due to MM charges

Electrostatic embedding

$$<\psi|\frac{q_M}{r_{iM}}|\psi>$$

these are integrals like the electron-core integrals in QM methods:

==> easy to compute, however:

- they are quite many for several 1000 MM atoms
- electron spill out problem: Electron density 'sees' more cores,

i.e. eventually likes to go out there when using large basis sets (Pauli repulsion is missing)

overpolarization problem: MM atom represented as point charge.
 This leads to an overstimation of the electrostatic interaction.

 $<\psi|rac{q_M}{r_{iM}}|\psi>$

- electron spill out problem: put pseudopotenials on MM atoms

- overpolarization problem:
 - damp the 1/r dependence for short distances (JCP 116, 6941) (resembles effect of smearing out the charges)
 - gaussian broadening of the point charges at the boundary (JCP 117,10534)

polarizable embedding

standard QM/MM: MM polarizes QM, but MM charges

unchanged due to changes in QM.

Large changes of QM dipole occur e.g.

- electron/proton transfer
- optical excitations

=> use **polarizable** models for MM

- mutual polarization of QM and MM

Explicit Polarization Models

- fluctuating (point) charge models (FQ)
 - QM SCF $\rightarrow \rho$ /point charges/multipoles
 - Chemical hardness models (e.g. SCC-DFTB, CHARMM-FQ)

$$E^{\text{ES}}(Q) = -\sum_{i} \mu_{i}Q_{i} + \frac{1}{2}\sum_{ij} \eta_{ij}(R_{ij},\eta_{i},\eta_{j})Q_{i}Q_{j}$$

Explicit Polarization Models

- fluctuating (point) charge models (FQ)
 - QM SCF $\rightarrow \rho$ /point charges/multipoles
 - Chemical hardness models (e.g. SCC-DFTB, CHARMM-FQ)

$$E^{\text{ES}}(Q) = -\sum_{i} \mu_{i} Q_{i} + \frac{1}{2} \sum_{ij} \eta_{ij} (R_{ij}, \eta_{i}, \eta_{j}) Q_{i} Q_{j}$$

- induced (atomic) dipole models
 - additive
 - interactive

$$\mu_i^{\text{ind}} = \alpha_i \xi_i \left(M, \underline{\mu}^{\text{ind}} \right)$$

$$E^{\rm ES}(M,\mu^{\rm ind}) = -\frac{1}{2} \sum_{i \neq j} M_i T_{ij} M_j - \sum_{i \neq j} \mu_i^{\rm ind} T_{ij} \left(M_j + \frac{1}{2} \mu_j^{\rm ind} \right) + \frac{1}{2} \sum_i \frac{1}{\alpha_i} |\mu_i^{\rm ind}|^2$$

Explicit Polarization Models

- fluctuating (point) charge models (FQ)
 - QM SCF $\rightarrow \rho$ /point charges/multipoles
 - Chemical hardness models (e.g. SCC-DFTB, CHARMM-FQ)

$$E^{\mathrm{ES}}(Q) = -\sum_{i} \mu_{i} Q_{i} + \frac{1}{2} \sum_{ij} \eta_{ij} (R_{ij}, \eta_{i}, \eta_{j}) Q_{i} Q_{j}$$

 $\mu_i^{\text{ind}} = \alpha_i \xi_i \left(M, \mu^{\text{ind}} \right)$

- induced (atomic) dipole models
 - additive
 - interactive

E

$$^{\mathrm{ES}}(M,\mu^{\mathrm{ind}}) = -\frac{1}{2} \sum_{i \neq j} M_i T_{ij} M_j - \sum_{i \neq j} \mu_i^{\mathrm{ind}} T_{ij} \left(M_j + \frac{1}{2} \mu_j^{\mathrm{ind}} \right) + \frac{1}{2} \sum_i \frac{1}{\alpha_i} |\mu_i^{\mathrm{ind}}|^2$$

Drude oscillator model

$$\alpha = \frac{q_{\rm D}^2}{k_{\rm D}}$$

$$Q_i - Q_i$$

Main distinction between QM/MM methods

- additive vs. subtractive methods
- embedding: mechanic, electrostatic or polarizable
- treatment of the boundary:
 - link atom, pseudo atom, hybrid orbitals
 - electrostatics

- put a H atom between
 MM and QM atom
- QM description saturated

Problems:

3 extra degrees of freedom during MD

- put a H atom between
 MM and QM atom
- QM description saturated

3 extra degrees of freedom during MD

constrain Hlink with respect to CQM and project forces to CQM

- put a H atom between
 MM and QM atom
- QM description saturated

Problems:

3 extra degrees of freedom during MD

constrain Hlink with respect to CQM and project forces to CQM

• C_{MM} - H_{link} very short (0.4 Å): electrostatic artifacts

- put a H atom between
 MM and QM atom
- QM description saturated

3 extra degrees of freedom during MD

constrain Hlink with respect to CQM and project forces to CQM

• C_{MM} - H_{link} very short (0.4 Å): electrostatic artifacts

modify charges on MM fragment

modify charges on MM fragment

• C_{MM} - H_{link} very short (0.4 Å): electrostatic artifacts

a) delete charge on C_{MM} b) delete charge on whole fragment both options quite bad!

• C_{MM} - H_{link} very short (0.4 Å): electrostatic artifacts modify charges on MM fragment MM region QM region a) delete charge on C_{MM} H(L b) delete charge on whole fragment $C_{\alpha}(\mathcal{M})$ H-CB Q both options quite bad!

c) delete charges on C_{MM} and H and redistribute >

to C=O and N-H, to maintain dipole moment of MM fragment

Boundary: pseudo atom

Pseudobond- connection atom: Zhang, Lee, Yang, JCP **110**, 46 Antes&Thiel, JPCA **103** 9290

- No link atom: parametrize $C_{\beta} H_2$ as pseudoatom (pseudo-F)
- put bonded terms at 'pseudo'-C $_{\beta}$ to connect with MM region

0111	N 10750	
MM region	QM regio	n
	H(L)	H
$C \mathcal{B}$		2
	5	

Boundary: frozen orbitals, hybride

Warshel, Levitt 1976 Rivail + co. 1996-2002 Gao et al 1998

- freeze orbital at 'last' QM atom
- other orbitals included in QM SCF
- put bonded terms at QM atom X to connect with MM region

Combined QM/MM

Nonbonding terms:

VdW

- take from force f
- reoptimize for QI

Coulomb:

which charges?

VdW
- take from force field
- reoptimize for QM level
Coulomb:
which charges?

$$\hat{H}_{QM/MM} = -\sum_{i,M} \frac{q_M}{r_{iM}} + \sum_{\alpha,M} \frac{Z_{\alpha}q_M}{R_{\alpha M}} + \sum_{\alpha,M} \left[\frac{A_{\alpha M}}{R_{\alpha M}^{12}} - \frac{B_{\alpha M}}{R_{\alpha M}^{6}} \right] + \hat{H}_{QM/MM}^{\text{int.coor}}$$

MM region

Amaro & Field ,T Chem Acc. 2003

OM region

Main distinction between QM/MM methods

- additive vs. subtractive methods
- embedding: mechanic, electrostatic or polarizable
- treatment of the boundary:
 - link atom, pseudo atom, hybrid orbitals
 - electrostatics

Combined QM/MM

Tests:

- C-C bond lengths, vib. frequencies
- C-C torsional barrier
- H-bonding complexes
- proton affinities, deprotonation energies

Local Orbital vs. plane wave approaches:

PW implementations

(most implementations in LCAO)

- periodic boundary conditions and large box! lots of empty space in unit cell
- hybride functionals have better accuracy: B3LYP, PBE0 etc.

+ no BSSE

+ parallelization (e.g. DNA with ~1000 Atoms)

Problems

- QM and MM accuracy
- QM/MM coupling
- model setup: solvent, restraints
- PES vs. FES: importance of sampling

All these factors CAN introduce errors in similar magnitude