Übungsklausur zur Vorlesung "Reaktionskinetik"

Aufgabe 1 - Formalkinetik (10 Punkte)

Der Mechanismus für den Zerfall von Ozon in Sauerstoff

$$2 O_3 \rightleftharpoons 3 O_2$$

werden folgende Reaktionsschritte angenommen:

$$O_3 \rightarrow O_2 + O$$
 (k₁, E_A = 103 kJ/mol)
 $O + O_2 \rightarrow O_3$ (k₂, E_A = 0 kJ/mol)
 $O + O_3 \rightarrow 2 O_2$ (k₃, E_A = 21 kJ/mol)

- a) Geben Sie das differentielle Zeitgesetz für $[O_3]$ in Abhängigkeit von k_1 , k_2 , k_3 , $[O_3]$ und $[O_2]$ an unter Anwendung der Quasistationarität. Vereinfachen Sie das Ergebnis (mit Begründung) durch Vernachlässigen bestimmter Terme.
- b) Berechnen Sie die scheinbare Aktivierungsenergie für die O₂-Bildung unter der Annahme eines vorgelagerten Gleichgewichts.

Aufgabe 2 - Formalkinetik (11 Punkte)

Betrachtet wird der reversible Reaktionszyklus

Alle Geschwindigkeitskonstanten in diesem Zyklus sind gleich groß. Die Konzentrationen für t = 0 sind gegeben zu $[A] = [A]_0$, [B] = [C] = 0.

Stellen Sie das differentielle Zeitgesetz für [A] auf und integrieren Sie dieses, geben Sie [A] = [A](t) an.

Aufgabe 3 - Potentiale (6 Punkte)

Es ist möglich eine termolekulare Reaktion als eine Sequenz von zwei bimolekularen Reaktionsschritten aufzufassen, z.B.

$$A + A \rightleftharpoons A_2$$

 $A_2 + B \rightarrow C$

Wichtig ist daher, die Konzentration des Dimers A_2 zu kennen, die über $K_c = \frac{[A_2]}{[A]^2}$ mit der Monomer-Konzentration verknüpft ist. Für ein Lennard-Jones-Potential zwischen den Reaktanten A+A kann gezeigt werden, dass die sogenannte reduzierte Gleichgewichtskonstante $K^* = \frac{3 \ K_c}{2\pi\sigma}$ mit der reduzierten Temperatur $T^* = \frac{k_B T}{\epsilon}$ über $K^* = 5$

 $(T^*)^{-3/2}$ verknüpft ist. Berechnen Sie die Konzentration an $(O_2)_2$ -Dimeren in mol/cm³ bei T =300 K und einem Druck von $P(O_2) = 1$ bar $(\frac{\varepsilon}{k_B} = 113$ K und $\sigma = 3.433$ Å).

Aufgabe 4 - TST (8 Punkte)

Betrachtet wird die Reaktion

$$M + CH_4 \rightarrow MH + CH_3$$

 $M+CH_4 \xrightarrow{\hspace{0.5cm}} MH+CH_3$ mit M=H oder D. Verwenden Sie die Theorie des Übergangszustandes, um das Verhältnis der Geschwindigkeitskonstanten $(\frac{k_H}{k_D})$ für die Abstraktion von H bzw. D durch M bei hohen Temperaturen mit Hilfe folgender Angaben zu berechnen:

Schwingungsfrequenzen der Übergangszustände in cm⁻¹:

Die Rotationskonstanten, Symmetriezahlen und die Schwellenenergie E₀ werden für beide Reaktionen als identisch angenommen.

Aufgabe 5 - Stoßtheorie (10 Punkte)

Die Arrheniusparameter für die Reaktion

$$NO + O_3 \rightarrow NO_2 + O_2$$

 $NO + O_3 \rightarrow NO_2 + O_2$ lauten $A = 7.94 \cdot 10^9 \text{dm}^3 \text{mol}^{-1} \text{ s}^{-1}$ und $E_a = 10.5 \text{ kJ/mol}$. Berechnen Sie unter der Annahme des "line-of-centers"-Modells die Schwellenenergie E_0 und den Hartkugel-Soßquerschnitt σ_{AB} für für 1000 K.

Aufgabe 6 - RRKM (12 Punkte)

Berechnen Sie die spezifische Geschwindigkeitskonstante nach RRKM für den unimolekularen Zerfall von Formaldehyd gemäß H₂CO → H₂ + CO bei einer Energie von 500 kJ mol⁻¹. Die Schwellenenergie beträgt 332 kJ mol⁻¹. Die Schwingungsfrequenzen entsprechen 2978, 1778, 1529, 2997, 1191, 1299 cm⁻¹ für H₂CO und 3132, 1855, 1351, 856, 805 cm⁻¹ für den Übergangszustand. Benutzen Sie die Whitten-Rabinovitch-Näherung (mit a = 1). Für die Summe der Zustände von s Schwingungsfreiheitsgraden lautet Sie allgemein:

$$W(E) = \frac{(E + aE_{zp})^{s}}{s! \prod_{i=1}^{s} h v_{i}}$$

wobei E_{zp} die Nullpunkts-Schwingungsenergie darstellt. Die so erhaltene Geschwindigkeitskonstante ist noch mit einem Faktor 2 zu multiplizieren. Warum?

Aufgabe 7 - Reaktionen in Lösungen (8 Punkte)

Nehmen Sie an, die Reaktion $A + B \rightarrow C$ sei diffusionskotrolliert.

- a) Berechnen Sie die Geschwindigkeitskonstante (in der Einheit dm³ mol⁻¹ s⁻¹) für Diethylether und Glycerin als Lösungsmittel bei Zimmertemperatur (298 K). Die Viskosität beträgt $2,33\cdot10^{-4}$ kg m⁻¹ s⁻¹ für den Ether und 1,49 kg m⁻¹ s⁻¹ für Glycerin. Ferner sei $D_A\approx D_B$ und $r_a=r_b=0,3$ nm (kugelförmige Teilchen).
- b) In welcher der beiden Lösungsmittel verläuft die Reaktion am wahrscheinlichsten diffusionskontrolliert ab (kurze Begründung)?
- c) Wie ändert sich die Geschwindigkeitskonstante, wenn A einfach negativ und B einfach positiv geladen ist? (kurze Begründung)

Nützliche Konstanten:

 $\begin{array}{lll} \mbox{Allgemeine Gaskonstante:} & R = 8,314 \ \mbox{J K}^{-1} \ \mbox{mol}^{-1} \\ \mbox{Plancksches Wirkungsquantum:} & h = 6,62 \cdot 10^{-34} \ \mbox{J s} \\ \mbox{Lichtgeschwindigkeit im Vakuum:} & c = 3,00 \cdot 10^8 \ \mbox{m s}^{-1} \\ \mbox{Boltzmann-Konstante:} & k_B = 1,38 \cdot 10^{-23} \ \mbox{J K}^{-1} \end{array}$

Faraday-Konstante: $F = 96485 \text{ C mol}^{-1} = 96485 \text{ As mol}^{-1}$

Elementarladung: $e = 1,602 \cdot 10^{-19} \text{ C}$

Anmerkung:

Die Übungsklausur wird im Rahmen der Vorlesung zu Reaktionskinetik am 11.07.13 ausführlich vorgerechnet!