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1 Abstract
The concentration dependence of the interfacial tension σ of mixtures of water with an
organic solvent has to be determined employing the maximum bubble pressure method at
constant temperature. Samples with volume concentrations φB = 0, 5, 10, 16, 25, 50, 75
and 100% of the organic solvent (acetone, ethanol or methanol) are measured.

2 Introduction
2.1 Theoretical background
The fundamental equation of the free enthalpy G of a system with K components in-
cluding the contribution of the surface can be written as:

dG = −SdT + V dp+
K∑
i=A

µidni + σdA (1)

The term σdA is new and refers to the interface. σ = (∂G/∂A)p,T,ni is the surface or
interfacial tension and dA is the differential variation of the surface area.
Following Gibbs this expression can be devided into the contributions of the adjoining

volume phases liquid (l) and vapour (v) and a contribution of the inhomogeneous inter-
“phase“ (superscript σ) lying in between. This inter-phase is regarded as a mathematical
two dimensional layer. As for all other extensive quantities we can write for the free
enthalpy G of a two phase system:
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G = Gl +Gv +Gσ (2)
We can apply equation (1) to Gσ at constant temperature T (for a two dimensional

surface V σ = 0):

dGσ =
∑
i

µidnσi + σdA , (3)

Integration under the restriction of constant composition yields

Gσ =
∑
i

µin
σ
i + σA . (4)

After subsequent differentiation (product rule!) we find:

dGσ =
∑
i

µidnσi +
∑
i

nσi dµi + σdA+ Adσ (5)

The comparison of equations (3) and (5) yields:

0 =
∑
i

nσi dµi + Adσ . (6)

This derivation is fully analogous to the Gibbs-Duhem equation. For a two component
system it reads:

Adσ = −nσAdµA − nσBdµB . (7)

Introducing now the Gibbs’ surface concentration Γi = nσi
A

it follows:

dσ = −ΓAdµA − ΓBdµB . (8)
The position of the Gibbs’ deviding surface can be fixed arbitraily. In a two component

system it is convenient to set z = 0 in a way that the surface concentration of the solvent
ΓA becomes zero. The segments denoted ⊕ and 	 in figure 1 cancel.

dσ = −ΓB(A)dµB . (9)
Now ΓB(A) is the relative surface concentration of the solute B after fixing the surface

with respect to A. Inserting

dµB = dµ◦B︸ ︷︷ ︸
=0

+RTd ln aB (10)

and rearranging the expression one obtains Gibbs’ adsorption isotherm:

ΓB(A) = − aB
RT

(
dσ
daB

)
T

(11)

If the solute is enriched at the surface (e. g. surfactant in water) ΓB(A) > 0 (in German:
kapillaraktiv), if it is depleted (e. g. salt in water) ΓB(A) < 0 (in German: kapillarinaktiv).
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Fig. 1: Fixing Gibbs’ deviding surface in a two component system. Concentration profile
of the solvent A (left) and of a solut B that is enriched at the interface (right).

In ideal or dilute solutions the activity coefficient can be set approximately to 1. It
follows for Gibbs’ adsorption isotherm (using volume concentration φB as concentrations
scale):

ΓB(A) = − φB
RT

(
dσ

dφB

)
T

(12)

Equation (12) is the main result of the above considerations.1 Measuring the concen-
tration dependence of the surface tension one has access to the relative surface concen-
tration ΓB(A)!

2.2 Szyszkowski and Langmuir
The experimental results will be evaluated according to an empirical relation due to
Szyszkowski:2

σ(φB) = σA − a ln (bφB + 1) (13)
with σA: surface tension of the pure solvent (here: water), a and b are constants, which
have to be evaluated using a nonlinear least square fit. Differentiating σ from equation

1Notice the expression φB

dφB
in equation (12). Since the unit of the concentration is cancelled, the

equation can be formulated with any concentration variable.
2B. von Szyszkowski, Z. Phys. Chem. 64 (1908) 385.
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(13) with respect to φB

dσ
dφB

= ab

bφB + 1 (14)

and inserting the result in equation (12), one obtains:

ΓB(A) = a

RT

bφB
bφB + 1 (15)

This equation is equivalent to Langmuir’s adsorption isotherm3 (see experiment A45),
which describes the adsorption of a gas at a solid surface:

nads = nmono
Kp

Kp+ 1 (16)

Analogous to the Langmuir isotherm equation (15) describes the enrichment of a
dissolved substance at the liquid-gas-interface. Thus, the term a

RT
has the meaning of

the maximum number of moles (per unit area) forming a monomolecular layer at the
interface. The constant b has the meaning of the equilibrium constant of the following
process:

Bdissolved 
 Binterface (17)

Both quantities a, b as well as ΓB(A) are accessible by fitting equation (13) to the data
points.

2.3 Experimental principles
Since a liquid system tends to minimize the interface a bubble inside a liquid exhibits
an additional pressure. This bubble or capillary pressure pσ is caused by interfacial
tension σ. Restricting to spherical surfaces of radius r it can be quantified by the Laplace
equation:

pσ = 2σ
r

(18)

The bubble pressure is easily accessible since it represents the highest pressure (in
addition to the hydrostatic pressure) to create bubbles that stream from a capillary into
the liquid. At this highest pressure the radius of the bubble is at its minimum and we
have: radius of the bubble ≈ radius of the capillary (see fig. 2):

pmax = 2σ
r

+ ρl (φB) gh′ (19)

with acceleration of gravity g = 9,807 ms−2, density of the liquid ρl (φB) at concentration
φB (see diagram at the end of this manuscript), immersion depth h′ of the capillary into
the liquid.

3I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361.
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3 Experimental procedure
3.1 Preparation of the solutions
With the help of bulb pipettes and volumetric flasks prepare mixtures of component A
(water) and of component B (either methanol, ethanol or acetone; ask the assistant which
mixture has to be prepared) with volume concentrations of φB = 0, 5, 10, 16, 25, 50, 75
und 100%. For this use the labelled flasks provided with the experiment:

Volume concentration / % 75 50 25 16 10 5
Volumetric flask / ml 20 20 100 50 100 100
Volume to be pipetted / ml 15 10 25 8 10 5

Attention: Never take the components directly from the storage bottles with the pipet-
tes. First fill the estimated volume into a beaker glass. Tabulate the following quantities

• the pipetted volume of component B,

• the kind and size of flasks,

• the respective volume error.

3.2 Getting the apparatus ready
Figure 2 shows a schematic sketch of the apparatus. It consists of a water manometer
(=U-tube) which on the left side is connected to the capillary with its grinded end plane,
and which on the right side is connected to a supply funnel. The tip of the glass rod
connected to the capillary has to be adjusted during the measurement to the liquid
surface. This assures a constant immersion depth. The valves H1, H2 und H3 serve for
venting the apparatus, filling the manometer with blue coloured water, to build up the
pressure pmax and for emptying the manometer. All valves and the connection to the
capillary have to be checked with respect to leak tightness. Possibly they have to be
sealed using vacuum grease.
Now, the manometer fluid has to be poured via the reservoir container (funnel) into

the manometer until the liquid reaches the scaled paper. Avoid bubbles, close valve H2
and fill the blue water until the liquid level is located in the reservoir.

3.3 Performing measurements
A 50 mL beaker will be filled with approx. 10 mL of the solution to be measured. It will
be placed onto the vertically adjustable (rough and fine) mount. Start the experiment
with the pure component B and end with pure water!
Using the rough adjustment of the mount (black screw at the vertical table-track)

the tip of the capillary will be positioned as to dip into the solution. Using the fine
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Fig. 2: Sketch of the experimental setup
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adjustment (brass screw below the bottom of the mount) retract the tip from the liquid
and readjust it until a meniscus is formed between tip and liquid surface.
Now, as valve H2 is opened carefully, water leaks form the reservoir into the mano-

meter. The air between the meniscus at the end of the capillary an the left manometer
tube is compressed. A height difference between the left and right manometer tube will
built up. Follow the height difference and read the levels in both tubes just before a
series of bubbles is set free into the solution in the beaker. This maximum height level
∆h is proportional to the pressure maximum. Each experimenter reads one tube (left or
right, change after five readings).
Perform 10 measurements for each solution, calculate the mean value ∆h and its

standard deviation δ∆h. As the manometer is overfilled with manometer liquid the level
can be subsequently lowered by opening valve H1 and H3.
After the experiments measure

• the dip depth h′ of the capillary with the help of a sliding calliper (use the accuracy
of 1/10mm),

• room temperature.

4 The tasks
1. Calculation of rK and its error δrK

First of all calculate the inner radius of the capillary rK using the measurement of
pure water (equation (19)), with ρl (φB = 0) = ρH2O (density: see appendix). pmax
can be calculated from the manometer height difference ∆h: pmax = ρH2O g∆h.
The surface tension of water can be calculated as function of the measurement
temperature (T in degree celsius)

σH2O(T ) = 0,07582 N
m − 1,542 · 10−4 N

K m T (20)

The error δrK of rK has to be calculated using Gauß’ error propagation from the
standard deviation of ∆h (see: www.ipc.kit.edu/18_2254.php, either equation 4
or 5).

2. Calculation and representation of σ(φB)
Calculate the surface tension for each concentration measured. For the densities
ρl(φB) of the mixtures see the appendix. For the error calculation consider the
error of rK and the standard deviation of the height measurement ∆h. Include in
a table: φB, ∆h, δ∆h, σ and δσ. Plot σ including error bars (±δσ) versus φB

3. Szyszkowski-Analysis
Determine the constants a and b of the Szyszkowski equation 13. Fit both para-
meters using a nonlinear least square routine (e. g. with the help of „Origin 9.1“,
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which is available in the computer pool at room 406. You can find a short descrip-
tion in the appendix). Plot the fitted curve and the data points in the composition
range 0 ≤ φB ≤ 1.

4. Determination of Gibbs’ relative surface concentration ΓB(A)

Determine ΓB(A) at compositions φB = 0,2 and φB = 0,4 using equation (15).
What is the space required by one molecule (either acetone, methanol or ethanol)
at the surface? How can that be calculated from ΓB(A)?

5. Answer the following questions:

• Explain the difference between volume concentration φB and volume fracti-
on ϕB. Explain under which experimental conditions one should use which
quantity (e. g. consider the sample preparation).

• Explain the term wetting. How can this property be described quantitatively?
• Where in nature, engineering and daily life does surface tension play an im-

portant role? Give some examples.

5 What else should be known
• How do surfactants work?

• Temperature dependence of simple liquids, Eötvös’ rule,

• Surface active vs. surface inactive Solutes

• Adsorption isotherm of Gibbs, adsorption isotherm of Langmuir

• Least square method

Appendix
Short description of the program „OriginPro 9.1“

Creating and plotting data
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• Start OriginPro 9.1

• Enter φB and σ(φB) in columns A(X) and B(Y)

• Create two new columns (right mouseclick aside the table I Neue Spalte) and
enter the errors in x- and y-direction. These columns have do be declared as error
columns (right mouseclick on the head of the respective column marks the column
I Setzen als I e. g. x-Fehlerbalken).

Fitting the parameter of the Szyszkowski function

Fig. 3:

• Mark all columns I Analyse I Anpassen I Nichtlinearer Fit.

• In the Fitdialogfenster (Builder) under I Einstellungen I Funktionsauswahl I Kate-
gorie I User Defined, then select I Funktion I <Neu...> (Fig. 3).

• In the following Fit-Dialogfenster under I Funktionsname choose a function name
and leave all other settings unchanged (Fig. 4).

• Choose the independent (e. g. x) and the dependent variable (e. g. y) and list in
the field I Parameter the fitting parameters (a and b) (separated by a comma)
(Fig. 5).

• Choose as I Funktionskörper I y=[value for σH2O]-a*ln(1+b*x) and initialize the
parameters by setting under I Parameter I Anfangswerte useful(!) start values for
a and b (Fig. 6).

• Click I Fertigstellen, then on the symbol I Fit bis konvergiert (Fig. 7 )
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Fig. 4:

Fig. 5:
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Fig. 6:

Fig. 7:
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• As the fit converged successfully Fit konvergiert press I OK. You proceed to the fit
results with parameters a and b with their errors. Open in the menue I Hinweise,
to disply the fit function. Below that you find a graph, which can be magnified bei
double clicking (Fig. 8).

Fig. 8:
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• If the fit did not converge (z. B. Funktion konvergiert nicht, try different starting
values for parameters a and b. Check the formular (e. g. for the correct delimiter
symbol: dot or comma).
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