A 31 Decomposition of Diacetone Alcohol

Task:

Determine the reaction rate coefficient for the decomposition of diacetone alcohol at 293 and 303 K.

Basics:

Diacetone alcohol $\left(\rho\left(20^{\circ} \mathrm{C}\right)=0,931 \mathrm{~g} / \mathrm{cm}^{3}\right)$ decomposes in an alkaline solution under volume expansion in Acetone $\left(\rho\left(20^{\circ} \mathrm{C}\right)=0,786 \mathrm{~g} / \mathrm{cm}^{3}\right)$

In a diluted solution, the decomposition can be determined as complete. At a constant OH^{-} concentration, the differential change of the concentration c_{A} of the precursor is

$$
\begin{equation*}
\frac{\mathrm{d} c_{\mathrm{A}}}{\mathrm{~d} t}=-k \cdot c_{\mathrm{A}} \tag{1}
\end{equation*}
$$

Integration gives:

$$
\begin{equation*}
\mathrm{c}_{\mathrm{A}}=c^{o}{ }_{\mathrm{A}} \cdot \exp (-k \cdot t) \tag{2}
\end{equation*}
$$

Or:

$$
\begin{equation*}
\ln \left(c_{\mathrm{A}} / c_{\mathrm{A}}^{o}\right)=-k \cdot t \tag{3}
\end{equation*}
$$

c^{O} is the initial concentration of the diacetone alcohol
k is the rate coefficient of the reaction.

The temperature dependency of k in a not too large temperature range can be described with the Arrhenius equation

$$
\begin{equation*}
k=A \cdot \exp \left(-\frac{E_{\mathrm{A}}}{R T}\right) \tag{4}
\end{equation*}
$$

where E_{A} is the activation energy, A the pre-factor and R the molar gas constant ($R=8.314$ $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$). From the Arrhenius equation, the definition of the activation energy is determined as:

$$
\begin{equation*}
E_{\mathrm{A}}=-R \frac{\partial \ln k}{\partial_{\bar{T}}^{\frac{1}{T}}} \tag{5}
\end{equation*}
$$

By measuring k at various temperatures, E_{A} and A can be determined. Consider the practicable application of a graphic determination of E_{A} and A.

The following preliminary considerations of the experimental procedure are made:
The volume change in the dilatometer runs proportionally to $c_{\mathrm{A}}(t)$. If the difference of the correspondent readings on the dilatometer (height change of the liquid column) is labelled h, then:
$c^{0}{ }_{\mathrm{A}} \sim h_{\infty}-h_{0} \quad$ and $\quad c_{\mathrm{A}}(t) \sim h_{\infty}-h$.

Where:

$$
\begin{aligned}
& h_{\infty}=h(t=\infty) \\
& h_{0}=h(t=0) \\
& h=h(t) .
\end{aligned}
$$

Applied to equation (3) gives:

$$
\begin{equation*}
\ln \frac{h_{\infty}-h}{h_{\infty}-h_{0}}=-k t \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\ln \left(h_{\infty}-h\right)=-k t+\ln \left(h_{\infty}-h_{0}\right) \tag{7}
\end{equation*}
$$

To determine h_{∞}, the value at the end of the reaction, an interval of time larger than $1 / k$ must be used. h_{∞} can be eliminated from equation (7). For this, $2 n$ measurements in the following pattern must be conducted:

$h_{1}, h_{2}, \ldots, h_{n}$	at the times	$t_{1}, t_{2}, \ldots, t_{n}$
$h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{n}^{\prime}$	at the times	$t_{1}+\tau, t_{2}+\tau, \ldots, t_{n}+\tau$

In the experiment, the constant time difference τ is approximately $2 \ln (2 / k)$.

Considering equation (6). With

$$
\begin{equation*}
\left(h_{\infty}-h\right) /\left(h_{\infty}-h_{0}\right)=\exp (-k t) \tag{8}
\end{equation*}
$$

we obtain:

$$
\begin{equation*}
h=h_{\infty}-\left(h_{\infty}-h_{0}\right) \cdot \exp (-k t) . \tag{9}
\end{equation*}
$$

For the values at the times t_{i} and $t_{i}+\tau$ we obtain:

$$
\begin{align*}
& h_{i}=h_{\infty}-\left(h_{\infty}-h_{0}\right) \cdot \exp \left(-k t_{i}\right) \tag{10a}\\
& h_{i}^{\prime}=h_{\infty}-\left(h_{\infty}-h_{0}\right) \cdot \exp \left(-k t_{i}\right) \cdot \exp (-k \tau) . \tag{10b}
\end{align*}
$$

The difference of the equations (10a) - (10b) gives:

$$
\begin{equation*}
h_{i}^{\prime}-h_{i}=\left(h_{\infty}-h_{0}\right) \cdot \exp \left(-k t_{i}\right) \cdot[1-\exp (-k \tau)] \tag{11}
\end{equation*}
$$

and finally:

$$
\begin{equation*}
\ln \left(h_{i}^{\prime}-h_{i}\right)=-k t_{i}+\ln \left(\left(h_{\infty}-h_{0}\right) \cdot[1-\exp (-k \tau]) .\right. \tag{12}
\end{equation*}
$$

To determine $k, \ln \left(h_{i}^{\prime}-h_{i}\right)$ is plotted against t_{i}. The result is a straight line with a gradient of $-k$.

Experimental Procedure:

Before every experiment, the dilatometer (diameter of the capillaries ca. 2 mm , volume of the container ca. $52 \mathrm{~cm}^{3}$) must be cleaned with distilled water and acetone and dried with the aspirator pump. The tap H is made of Teflon and must not be greased. Clean and dry two Erlenmeyer flasks. In Flask I pipette $10 \mathrm{~cm}^{3}$ of diacetone alcohol and $40 \mathrm{~cm}^{3}$ of distilled water, in Flask II pipette $10 \mathrm{~cm}^{3} 0,5 \mathrm{n} \mathrm{NaOH}$ and $40 \mathrm{~cm}^{3}$ of distilled water. For thermostatic control, place the dilatometer and the Erlenmeyer flasks into the thermostats (frequently shake the Erlenmeyer flasks lightly). After ca. 15 minutes, mix the contents of Flasks I and II together (pour the contents of Flask II into Flask I then, to flush the mixture, pour the entire mixture back into Flask II). Remove the dilatometer from the thermostat and slowly pour the reaction mixture in through the opening A until the meniscus reaches the capillary at point K (a moistening of the capillary walls due to liquid which has risen too high will falsify results). In the process, the dilatometer is tilted and the tap H is open. Close the tap H , and submerge
the dilatometer in the thermostat up to the point K . There must be no bubbles under the tap. Start the stopwatch, then note the values h_{i} and h_{i}^{\prime} for the following times respectively.

Work under the following conditions:

$$
\begin{array}{ll}
1^{\text {st }} \text { Experiment: } & T=293 \mathrm{~K}, \tau=40 \mathrm{~min} \\
& h \text { at } t=4,8,12 \ldots . .40 \mathrm{~min} \\
& h^{\prime} \text { at } t+\tau=44,48,52 \ldots . .80 \mathrm{~min} \\
2^{\text {nd }} \text { Experiment: } & T=303 \mathrm{~K}, \tau=20 \mathrm{~min} \\
& h \text { at } t=2,4,6 \ldots . .20 \mathrm{~min} \\
& h^{\prime} \text { at } t+\tau=22,24,26 \ldots . .40 \mathrm{~min}
\end{array}
$$

Data Analysis:

1. Plot $\ln \left(h^{\prime}-h\right)$ against t and determine the value of the reaction rate coefficient k in s^{-1}. Estimate the error in h_{i} and $h_{i}{ }^{\prime}$ and determine the margin of error for $\ln \left(h_{i}{ }^{\prime}-h_{i}\right)$.
From this, use graphical evaluation to determine the error in k.
2. From the values of the reaction rate coefficients at 293 K and 303 K , determine the activation energy E_{A} in $\mathrm{kJ} / \mathrm{mol}$ and the pre-factor A in s^{-1}.
Calculate the maximum error estimation for E_{A} and A.

What you should know:

- Rate laws of $0,1^{\text {st }}$, and $2^{\text {nd }}$ order reactions
- Half-life period
- Simple consecutive and parallel reactions
- The Arrhenius Model of the temperature dependence of reaction rate coefficients
- Basics of the Collision Theory and the Transition State Theory

Extra Questions:

1. Differentiate between the terms "Reaction Order" and "Molecularity"
2. Discuss the Chapman-mechanism (see textbooks). Why is it important?
